
Using Containers to Create More Interactive
Online Training and Education Materials

Center for Advanced Computing (CAC)

Brandon Barker - brandon.barker@cornell.edu
Susan Mehringer - shm7@cornell.edu

PEARC20 - 29 July 2020

Photos, illustrations, graphics here.

• Cornell Virtual Workshop
– Online training platform, evolving since 1994
– Not-for-credit training units on computational topics
– Goal: effective instruction through appropriate components

• CCRS was developed to incorporate hands-on exercises that are realistic and
immediately accessible
– No need to get an allocation
– No need to leave the browser
– No need to install software

• CCRS uses a container back-end built to look and feel like the target platform

Cornell Container Runner Service (CCRS)

Photos, illustrations, graphics here.

Demo

Photos, illustrations, graphics here.

Demo

Photos, illustrations, graphics here.

Unlike Jupyter and other notebooks:
– Take advantage of abundance and customizability of containers
• A content author could supply their own or use a pre-existing container
• Much simpler to create containers than a custom Jupyter kernel

– Easily embed in any training web page
– Support a variety of elements commonly used in HPC:
• Customized editors, linked with custom commands, to custom

containers!
• Generic command runners
• Shell interface (in the works)

Why Develop CCRS?

Photos, illustrations, graphics here.

• CCRS based on the Cornell Job Runner Service (CJRS)
• CJRS developed at CAC immediately before CCRS by Aaron

Birkland and Susan Mehringer
• CCRS uses custom “job” management instead of Slurm
• Traditional notion of job management not as much of a concern as

flexibility attributed to containers.
• Exercise jobs are lightweight and can be limited via ulimit, container

run parameters, etc.

From CJRS to CCRS

Photos, illustrations, graphics here.
Not shown: container-type-dependent
handling of garbage collection of
job contexts, users, and containers

CCRS Container Lifecyle

Photos, illustrations, graphics here.

• Implemented in Scala (server) and Scala.js (browser client)
– Allows a uniform language for RPCs between the frontend and backend
– Employs the ZIO library to keep most code purely functional, reducing errors

and simplifying concurrency
• Various job types implemented as typeclasses

– More job types can be added easily in the future
– Reduces the need to worry about inheritance
• instead it is a decoupled interface

• Copious logging used for tracking potential problems due to:
– Application logic, OS, or Container errors
– Problems with users’ jobs
– And (hopefully unlikely) malicious users

Implementation Overview

https://en.wikipedia.org/wiki/Type_class

Photos, illustrations, graphics here.

• Scala.js and JavaScript APIs exist
• The JavaScript API is a wrapper around Scala.js APIs
• The current API is fairly verbose, allowing greater customization
• We are exploring options for creating simpler JavaScript APIs on top

of this for common use cases

IOW, the content developer can
- Use the simplified JavaScript API for common use cases, or
- Use the fully customizable JavaScript API

An Example, but First: CCRS API

Photos, illustrations, graphics here.

• To use the API, the page must load the requisite JavaScript code,
optionally including ace.js if an editor-based example is used on the
page:

• Next, a particular element, such as
a one-shot command, can be added:

Integrating CCRS: An example

Photos, illustrations, graphics here.

Integrating CCRS: An example (continued)

Photos, illustrations, graphics here.

• Currently CCRS can
– One-shot command, e.g. “echo $PATH”
– Edit code, then run it (any software that is on the container)

• Additions currently in development include
– Interactive terminal/shell
– Improved security
– Display generated images and files

• Implementation by the web page developer will be simplified by
– Provide encapsulated JavaScript APIs for common use cases

• Possible community share via GitHub
– Show of hands: Share this with the community?
– Interest in testing beta? Please send email (~ 6 months)

In Conclusion

Thank you.

Brandon Barker brandon.barker@cornell.edu
Susan Mehringer shm7@cornell.edu

Cornell University Center for Advanced Computing (CAC)

