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• Cornell Virtual Workshop  
– Online training platform, evolving since 1994
– Not-for-credit training units on computational topics
– Goal: effective instruction through appropriate components

• CCRS was developed to incorporate hands-on exercises that are realistic and 
immediately accessible
– No need to get an allocation
– No need to leave the browser
– No need to install software

• CCRS uses a container back-end built to look and feel like the target platform

Cornell Container Runner Service (CCRS)
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Demo
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Unlike Jupyter and other notebooks:
– Take advantage of abundance and customizability of containers
• A content author could supply their own or use a pre-existing container
• Much simpler to create containers than a custom Jupyter kernel

– Easily embed in any training web page 
– Support a variety of elements commonly used in HPC:
• Customized editors, linked with custom commands, to custom 

containers!
• Generic command runners
• Shell interface (in the works)

Why Develop CCRS?
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• CCRS based on the Cornell Job Runner Service (CJRS)
• CJRS developed at CAC immediately before CCRS by Aaron 

Birkland and Susan Mehringer
• CCRS uses custom “job” management instead of Slurm
• Traditional notion of job management not as much of a concern as 

flexibility attributed to containers.
• Exercise jobs are lightweight and can be limited via ulimit, container 

run parameters, etc.

From CJRS to CCRS
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Not shown: container-type-dependent 
handling of garbage collection of 
job contexts, users, and containers

CCRS Container Lifecyle
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• Implemented in Scala (server) and Scala.js (browser client)
– Allows a uniform language for RPCs between the frontend and backend
– Employs the ZIO library to keep most code purely functional, reducing errors 

and simplifying concurrency
• Various job types implemented as typeclasses

– More job types can be added easily in the future
– Reduces the need to worry about inheritance 
• instead it is a decoupled interface

• Copious logging used for tracking potential problems due to:
– Application logic, OS, or Container errors
– Problems with users’ jobs
– And (hopefully unlikely) malicious users

Implementation Overview

https://en.wikipedia.org/wiki/Type_class
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• Scala.js and JavaScript APIs exist
• The JavaScript API is a wrapper around Scala.js APIs
• The current API is fairly verbose, allowing greater customization
• We are exploring options for creating simpler JavaScript APIs on top 

of this for common use cases

IOW, the content developer can
- Use the simplified JavaScript API for common use cases, or
- Use the fully customizable JavaScript API

An Example, but First: CCRS API
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• To use the API, the page must load the requisite JavaScript code, 
optionally including ace.js if an editor-based example is used on the 
page:

• Next, a particular element, such as 
a one-shot command, can be added:

Integrating CCRS: An example
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Integrating CCRS: An example (continued)
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• Currently CCRS can
– One-shot command, e.g. “echo $PATH” 
– Edit code, then run it (any software that is on the container)

• Additions currently in development include
– Interactive terminal/shell
– Improved security
– Display generated images and files

• Implementation by the web page developer will be simplified by
– Provide encapsulated JavaScript APIs for common use cases

• Possible community share via GitHub
– Show of hands: Share this with the community? 
– Interest in testing beta? Please send email (~ 6 months)

In Conclusion
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