
MapReduce and Hadoop

Aaron Birkland
Cornell Center for Advanced Computing

January 2012

Motivation

• Simple programming model for Big Data

– Distributed, parallel – but hides this

• Established success at petabyte scale

– Internet search indexes, analysis

– Google, yahoo facebook

• Recently: 8000 nodes sort 10PB in 6.5 hours

• Open source frameworks with different goals
– Hadoop, phoenix

• Lots of research in last 5 years

– Adapt scientific computation algorithms to MapReduce,
performance analysis

1/19/2012 2

A programming model with some nice consequences

• Map(D) → list(Ki, Vi)

• Reduce(Ki, list(Vi)) → list(Vf)

• Map: “Apply a function to every member of dataset” to
produce a list of key-value pairs

– Dataset: set of values of uniform type D
• Image blobs, lines of text, individual points, etc

– Function: transforms each value into a list of zero or more
key,value pairs of types Ki, Vi

• Reduce: Given a key and all associated values, do
some processing to produce list of type Vf

• Execution over data is managed by a MapReduce
framework

1/19/2012 3

Canonical example: Word Count

• D = lines of text

• Ki = Single Words

• Vi = Numbers

• Vf = Word/count pairs

• Map(D) = Emit pairs containing each word and the
number 1

• Reduce(Ki, list(Vi)) = Sum all the numbers in the list
associated with the given word. Emit the word and the
resulting count

Map(D) → list(Ki, Vi)

Reduce(Ki, list(Vi)) → list(Vf)

1/19/2012 4

Canonical example: Word Count

absence of evidence

is not evidence of

absence

(absence, 1)

(of, 1)

(evidence, 1)

(is, 1)

(not, 1)

(evidence, 1)

(of, 1)

(absence, 1)

Map(D) → list(Ki, Vi)

(of, 1)

(evidence, 1)

(absence, 1)

(absence, 1)

(of, 1)

(of, 1)

(evidence, 1)

(evidence, 1)

(is, 1)

(not, 1)

(absence, 2)

(of, 2)

(evidence, 2)

(is, 1)

(not, 1)

Somehow need to group by keys so Reduce can be given all associated values!

Reduce(Ki, list(Vi)) → list(Vf)

1/19/2012 5

Opportunities for Parallelism?

absence of evidence

is not evidence of

absence

(absence, 1)

(of, 1)

(evidence, 1)

(is, 1)

(not, 1)

(evidence, 1)

(of, 1)

(absence, 1)

(of, 1)

(evidence, 1)

(absence, 1)

(absence, 1)

(of, 1)

(of, 1)

(evidence, 1)

(evidence, 1)

(is, 1)

(not, 1)

(absence, 2)

(of, 2)

(evidence, 2)

(is, 1)

(not, 1)

Promising Promising Worrisome

1/19/2012 6

Opportunities for Parallelism

• Map and Reduce functions are independent

– No explicit communication between them

– Grouping phase between Map and Reduce is the only point
of data exchange

• Individual Map, Reduce results depend only on input
value.

– Order of data, execution does not matter in the end.

• Input data read in parallel

• Output data written in parallel

1/19/2012 7

Parallel, Distributed execution

absence of evidence
is not evidence of
absence

absence of evidence is not evidence of absence

(absence, 1)
(of, 1)
(evidence, 1)

(is, 1)
(not, 1)
(evidence, 1)
(of, 1)

(absence, 1)

(absence, 1)
(absence, 1)

(of, 1)
(of, 1)

(not, 1) (is, 1) (evidence, 1)
(evidence, 1)

(absence, 2) (not, 1) (of, 2) (is, 1) (evidence, 2)

(absence, 2)
(not, 1)
(of, 2)

(is, 1)
(evidence, 2)

M
a
p

R
e
d
u
c
e

1/19/2012 8

Full Parallel Pipeline

Split

Read Map

(Combine)

Group

Partition

Reduce Write

1/19/2012 9

Full Parallel Pipeline

Split – Divide data into parallel streams

• Use features of underlying storage technology

• File sharding, locality information, parallel data

formats 1/19/2012 10

Full Parallel Pipeline

Read – Chop data into iterable units

• Most common in MapReduce world – Lines of Text

• Can be arbitrary simple or complex –integer arrays, pdf

documents, mesh fragments, etc. 1/19/2012 11

Full Parallel Pipeline

Map – Apply a function, return a list of keys/values

1/19/2012 12

Full Parallel Pipeline

Combine – (optional) execute a “mini-reduce” on some set

of map output

• For optimization purposes

• May not be possible for every algorithm 1/19/2012 13

Full Parallel Pipeline

Group – Group all results by key, collapse into a list of

values for each key

• Need all intermediate values before this can complete

• Automatically performed by MapReduce framework 1/19/2012 14

Full Parallel Pipeline

Partition – Send grouped data to reduce processes

• Typically, just a dumb hash to evenly distribute

• Opportunities for balancing or other optimization.

1/19/2012 15

Full Parallel Pipeline

Reduce – Run a computation over each aggregated result,

produce a final list of values

1/19/2012 16

Full Parallel Pipeline

Write – Move Reduce results to their final destination

• Could be storage, or another MapReduce process!

1/19/2012 17

Programming considerations

You must provide:

• Map, Reduce functions

You may provide:

• Combine, if it helps

• Partition function, if it
matters

Framework must provide:

• Grouping and data
shuffling

Framework may provide:

• Read, Write

– For simple data such as
lines of text

• Split

– For parallel storage or data
formats it knows about

 1/19/2012 18

Benefits

• Presents an easy-to-use programming model

– No synchronization, communication by individual
components. Ugly details hidden by framework.

• Execution managed by a framework
– Failure recovery (Maps/Reduces can always be re-run if

necessary)

– Speculative execution (Several processes operate on same
data, whoever finishes first wins)

– Load balancing

• Adapt and optimize for different storage paradigms

1/19/2012 19

Drawbacks

• Grouping/partitioning is serial!

– Need to wait for all map tasks to complete before any
reduce tasks can be run

• Some algorithms may be hard to conceptualize in
MapReduce.

• Some algorithms may be inefficient to express in terms
of Map Reduce

1/19/2012 20

Hadoop

• Open Source MapReduce framework in Java

– Spinoff from Nuch web crawler project

• HDFS – Hadoop Distributed Filesystem

– Distributed, fault-tolerant, sharding

• Many sub-projects

– Pig: Data-flow and execution language. Scripting for
MapReduce

– Hive: SQL-like language for analyzing data

– Mahout: Machine learning and data mining libraries
• K-means clustering, Singular Value Decomposition, Bayesian classification

1/19/2012 21

Hadoop

• User provides java classes for Map, Reduce functions

– Can subclass or implement virtually every aspect of
MapReduce pipeline or scheduling

• Streaming mode to STDIN, STDOUT of external map,
reduce processes (can be implemented in any
language)
– Lots of scientific data that goes beyond lines of text

– Lots of existing/legacy code that can be adapted/wrapped
into a Map or Reduce stage.

stream -input /dataDir/dataFile

-file myMapper.sh -mapper “myMapper.sh"

-file myReducer.sh -reducer “myReducer.sh"

-output /dataDir/myResults

 1/19/2012 22

HDFS

• Data distributed among compute nodes

– Sharding: 64MB chunks

– Redundancy

• Small number of large files

• Not quite POSIX file semantics

– No random write, append

• Write-once read many

• Favor throughput over latency

• Streaming/sequential access to files

1/19/2012 23

HDFS

1

2

3

4

4 3

1
DataNode

3 1

2
DataNode

4 2

3
DataNode

2 1

4
DataNode

NameNode

R
e
p
lic

a
tio

n

Sharding

1/19/2012 24

4

2

1

3

HDFS + MapReduce

1

2

3

4

4 3

1
DataNode

Map/Red

3 1

2
DataNode

Map/Red

4 2

3
DataNode

Map/Red

2 1

4
DataNode

Map/Red

NameNode

JobTracker

3

1

2

4

Locality

metadata

Split fn

1/19/2012 25

HDFS + MapReduce

• Assume failure-prone nodes

– Data and computation recovery through redundancy

• Move computation to data

– Data is local to computation, direct-attached storage to each
node

• Sequential reads on large blocks

• Minimal contention
– Simultaneous maps/reduces on a node can be controlled by

configuration

1/19/2012 26

Hadoop + HDFS vs HPC

4 3

1 ….

….

3 1

2 ….

….

4 2

3 ….

….

2 1

4 ….

….

….

….

….

….

….

….

….

….

1 2 3 4
1/19/2012 27

Hadoop in HPC environments

• Access to local storage can be problematic

– Local storage may not be available at all

– Even if so, long-term HDFS usually not possible

• HPC relies on global storage (e.g. Lustre) via high-
speed interconnect.
– What is meaning of “locality” in inherently non-local (but

parallel) storage?

1/19/2012 28

Hadoop @ TACC

• On Longhorn visualization cluster

• Special, local, persistent /hadoop filesystem on some
machines
– 48 nodes with 2TB HDFS storage/node

– 16 nodes with 1TB HDFS storage/node, extra large memory
(144GB memory)

• Modified hadoop distribution
– Starts HDFS on allocated nodes

• Special Hadoop queue

• By request only

• Details at https://sites.google.com/site/tacchadoop

 1/19/2012 29

https://sites.google.com/site/tacchadoop

Dark Matter Halo Detection on Longhorn

• 200 TB simulated astronomy data

• Explore algorithms for identifying halo candidates by
analyzing star density

• Compared compute parallel vs HDFS+MapReduce Data
Parallel

– ~57k data points/node/hr for compute parallel

– ~600k data points/node/hr data parallel with MapReduce +
HDFS

1/19/2012 30

BLAST at NERSC

• Streaming API

• Issues with data format.

– FASTA: sequence represented on multiple lines
>some sort of header

ACTGCATCATCATCATCAT

GGGCTTACATCATCATCAT

– Lots of effort re-implementing basic data handling
components (Reader, possibly Split)

– Eventually re-formatted data so each sequence was on own
line

• Overall performance: Not significantly better than
existing parallel methods

1/19/2012 31

Still much to learn

• Most established patterns are from web and text
processing (inverted indexes, ranking, clustering, etc)

• Scientific data and algorithms much more varied
– Papers describing an existing problem applied to

MapReduce are common

• When does HDFS provide benefit over traditional global
shared FS?
– Tends to do poorly for small tasks, can be a crossover point

that needs to be found

• Lots of tuning parameters
– Data skew and heterogeneity may lead to long, inefficient

jobs.
1/19/2012 32

Why Hadoop?

• If you find the programming model simple/easy

• If you have a data intensive workload

• If you need fault tolerance

• If you have dedicated nodes available

• If you like Java

• If you want to experiment.

1/19/2012 33

