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Motivation 

• Simple programming model for Big Data 

– Distributed, parallel – but hides this       

• Established success at petabyte scale 

– Internet search indexes, analysis 

– Google, yahoo facebook 

• Recently: 8000 nodes sort 10PB in 6.5 hours 

• Open source frameworks with different goals 
– Hadoop, phoenix 

• Lots of research in last 5 years 

– Adapt scientific computation algorithms to MapReduce, 
performance analysis 

1/19/2012 2 



A programming model with some nice consequences 

• Map(D) → list(Ki, Vi) 

• Reduce(Ki, list(Vi)) → list(Vf) 

• Map: “Apply a function to every member of dataset” to 
produce a list of key-value pairs 

– Dataset: set of values of uniform type D 
• Image blobs, lines of text, individual points, etc 

– Function: transforms each value into a list of zero or more 
key,value pairs of types Ki, Vi 

• Reduce: Given a key and all associated values, do 
some processing to produce list of type Vf 

• Execution over data is managed by a MapReduce 
framework 
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Canonical example: Word Count 

• D = lines of text 

• Ki = Single Words 

• Vi = Numbers 

• Vf = Word/count pairs 

• Map(D) = Emit pairs containing each word and the 
number 1 

• Reduce(Ki, list(Vi)) = Sum all the numbers in the list 
associated with the given word. Emit the word and the 
resulting count 

 

Map(D) → list(Ki, Vi) 

Reduce(Ki, list(Vi)) → list(Vf) 
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Canonical example: Word Count 

absence of evidence 

is not evidence of 

absence 

(absence, 1) 

(of, 1) 

(evidence, 1) 

(is, 1) 

(not, 1) 

(evidence, 1) 

(of, 1) 

(absence, 1) 

Map(D) → list(Ki, Vi) 

(of, 1) 

(evidence, 1) 

(absence, 1) 

(absence, 1) 

(of, 1) 

(of, 1) 

(evidence, 1) 

(evidence, 1) 

(is, 1) 

(not, 1) 

(absence, 2) 

(of, 2) 

(evidence, 2) 

(is, 1) 

(not, 1) 

Somehow need to group by keys so Reduce can be given all associated values! 

Reduce(Ki, list(Vi)) → list(Vf) 
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Opportunities for Parallelism? 

absence of evidence 

is not evidence of 
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Promising Promising Worrisome 
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Opportunities for Parallelism 

• Map and Reduce functions are independent 

– No explicit communication between them 

– Grouping phase between Map and Reduce is the only point 
of data exchange 

• Individual Map, Reduce results depend only on input 
value. 

– Order of data, execution does not matter in the end. 

• Input data read in parallel 

• Output data written in parallel 
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Parallel, Distributed execution 

absence of evidence 
is not evidence of 
absence 

absence of evidence is not evidence of absence 
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Full Parallel Pipeline 

Split 

Read Map 

(Combine) 

Group 

Partition 

Reduce Write 
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Full Parallel Pipeline 

Split – Divide data into parallel streams 

• Use features of underlying storage technology 

• File sharding, locality information, parallel data 

formats 1/19/2012 10 



Full Parallel Pipeline 

Read – Chop data into iterable units 

• Most common in MapReduce world – Lines of Text 

• Can be arbitrary simple or complex –integer arrays, pdf 

documents, mesh fragments, etc. 1/19/2012 11 



Full Parallel Pipeline 

Map – Apply a function, return a list of keys/values 
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Full Parallel Pipeline 

Combine – (optional) execute a “mini-reduce” on some set 

of map output 

• For optimization purposes 

• May not be possible for every algorithm 1/19/2012 13 



Full Parallel Pipeline 

Group – Group all results by key, collapse into a list of 

values for each key 

• Need all intermediate values before this can complete 

• Automatically performed by MapReduce framework 1/19/2012 14 



Full Parallel Pipeline 

Partition – Send grouped data to reduce processes 

• Typically, just a dumb hash to evenly distribute 

• Opportunities for balancing or other optimization. 
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Full Parallel Pipeline 

Reduce – Run a computation over each aggregated result, 

produce a final list of values 
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Full Parallel Pipeline 

Write – Move Reduce results to their final destination 

• Could be storage, or another MapReduce process! 
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Programming considerations 

You must provide: 

• Map, Reduce functions 

 

You may provide:  

• Combine, if it helps 

• Partition function, if it 
matters 

Framework must provide: 

• Grouping and data 
shuffling 

 

Framework may provide: 

• Read, Write 

– For simple data such as 
lines of text 

• Split 

– For parallel storage or data 
formats it knows about 
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Benefits 

• Presents an easy-to-use programming model 

– No synchronization, communication by individual 
components.  Ugly details hidden by framework. 

• Execution managed by a framework  
– Failure recovery (Maps/Reduces can always be re-run if 

necessary) 

– Speculative execution (Several processes operate on same 
data, whoever finishes first wins) 

– Load balancing 

• Adapt and optimize for different storage paradigms 
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Drawbacks 

• Grouping/partitioning is serial! 

– Need to wait for all map tasks to complete before any 
reduce tasks can be run 

• Some algorithms may be hard to conceptualize in 
MapReduce. 

• Some algorithms may be inefficient to express in terms 
of Map Reduce 
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Hadoop 

• Open Source MapReduce framework in Java 

– Spinoff from Nuch web crawler project 

• HDFS – Hadoop Distributed Filesystem 

– Distributed, fault-tolerant, sharding 

• Many sub-projects 

– Pig: Data-flow and execution language.  Scripting for 
MapReduce 

– Hive: SQL-like language for analyzing data 

– Mahout: Machine learning and data mining libraries 
• K-means clustering, Singular Value Decomposition,  Bayesian classification 
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Hadoop 

• User provides java classes for Map, Reduce functions 

– Can subclass or implement virtually every aspect of 
MapReduce pipeline or scheduling 

• Streaming mode to STDIN, STDOUT of external map, 
reduce processes (can be implemented in any 
language) 
– Lots of scientific data that goes beyond lines of text 

– Lots of existing/legacy code that can be adapted/wrapped 
into a Map or Reduce stage. 

 

 

stream -input /dataDir/dataFile  

-file myMapper.sh -mapper “myMapper.sh"  

-file myReducer.sh -reducer “myReducer.sh"  

-output /dataDir/myResults 
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HDFS 

• Data distributed among compute nodes 

– Sharding: 64MB chunks 

– Redundancy 

• Small number of large files 

• Not quite POSIX file semantics 

– No random write, append 

• Write-once read many 

• Favor throughput over latency 

• Streaming/sequential access to files 
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HDFS 
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HDFS + MapReduce 
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HDFS + MapReduce 

• Assume failure-prone nodes 

– Data and computation recovery through redundancy 

• Move computation to data 

– Data is local to computation, direct-attached storage to each 
node 

• Sequential reads on large blocks 

• Minimal contention  
– Simultaneous maps/reduces on a node can be controlled by 

configuration  
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Hadoop + HDFS vs HPC 
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Hadoop in HPC environments 

• Access to local storage can be problematic 

– Local storage may not be available at all 

– Even if so, long-term HDFS usually not possible 

• HPC relies on global storage (e.g. Lustre) via high-
speed interconnect. 
– What is meaning of “locality” in inherently non-local (but 

parallel) storage? 
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Hadoop @ TACC 

• On Longhorn visualization cluster 

• Special, local, persistent /hadoop filesystem on some 
machines 
– 48 nodes with 2TB HDFS storage/node 

– 16 nodes with 1TB HDFS storage/node, extra large memory 
(144GB  memory) 

• Modified hadoop distribution 
– Starts HDFS on allocated nodes  

• Special Hadoop queue 

• By request only 

• Details at https://sites.google.com/site/tacchadoop 
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Dark Matter Halo Detection on Longhorn 

• 200 TB simulated astronomy data 

• Explore algorithms for identifying halo candidates by 
analyzing star density 

• Compared compute parallel vs HDFS+MapReduce Data 
Parallel 

– ~57k data points/node/hr for compute parallel 

– ~600k data points/node/hr data parallel with MapReduce + 
HDFS 
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BLAST at NERSC 

• Streaming API 

• Issues with data format. 

– FASTA: sequence represented on multiple lines 
>some sort of header 

ACTGCATCATCATCATCAT 

GGGCTTACATCATCATCAT 

– Lots of effort re-implementing basic data handling 
components (Reader, possibly Split) 

– Eventually re-formatted data so each sequence was on own 
line 

• Overall performance:  Not significantly better than 
existing parallel methods 
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Still much to learn 

• Most established patterns are from web and text 
processing  (inverted indexes, ranking, clustering, etc) 

• Scientific data and algorithms much more varied 
– Papers describing an existing problem applied to 

MapReduce are common 

• When does HDFS provide benefit over traditional global 
shared FS? 
– Tends to do poorly for small tasks, can be a crossover point 

that needs to be found 

• Lots of tuning parameters 
– Data skew and heterogeneity may lead to long, inefficient 

jobs.  
1/19/2012 32 



Why Hadoop? 

• If you find the programming model simple/easy 

• If you have a data intensive workload 

• If you need fault tolerance 

• If you have dedicated nodes available 

• If you like Java 

• If you want to experiment. 
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