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Great Little Program

• What happens when I run it on the cluster?
• How can I make it faster?
• Can I run it on 40 nodes, 4000 nodes?
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Lots of Things Contribute To Finishing Your Work

• Well-posed model for the system.
• Choosing among algorithms that express that model.
• Implementation of that algorithm in code.
• Compilation of the code.
• Runtime environment.
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Realistic Concerns

• Do you have time to make it parallel?
• Do you have the time to rewrite in a faster language?
• Do you have compute hours to burn, or do they cost a lot?
• Do you have to understand the code and use it again?
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Use Libraries

• Optimized for specific architectures
• Much faster than hand-coding your own, even from NR
• Offered by different vendors (ESSL/PESSL on IBM systems, Intel 

MKL for IA32, EM64T and IA64, Cray libsci for Cray systems, 
SCSL for SGI)
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Libraries on Ranger

Performance Math Libs Method Libs Applications I/O
gprof fftw petsc Amber netcdf
tau GotoBLAS scalapack NAMD hdf5
papi Metis/parmetis charm++

MKL 10.0 Gamess
Gnu Scientific
Library
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Intel MKL 10.0

• Basic Linear Algebra Subroutines, such as ax+y
• LAPACK
• FFT
• All highly optimized
• Call from C, Fortran, other languages
• Module load mkl
• mpicc –l$TACC_MKL_INC –l$tacc_mkl_lib –LMKL_em64t
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GotoBLAS

• Hand-optimized BLAS
• Test to see what kind of advantage your code gets.
• Minimizes TLB misses.
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Fastest Fourier Transform in the West

• Cooley-Tukey algorithm 
• Prime Factor algorithm {most efficient with small prime factors 

(2,3,5, and 7)} 
• Rader's algorithm for prime sizes 
• split-radix algorithm (with a variation due to Dan Bernstein) 
• automatic performance adaptation 
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PETSc

• PETSc, the Portable, Extensible Toolkit for Scientific computation, 
provides sets of tools for the parallel (as well as serial), numerical 
solution of PDEs that require solving large-scale, sparse nonlinear 
systems of equations. PETSc includes nonlinear and linear equation 
solvers that employ a variety of Newton techniques and Krylov
subspace methods. 
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PETSc
• Parallel vectors

– scatters (handles communicating ghost point information) 
– gathers 

• Parallel matrices
– several sparse storage formats 
– easy, efficient assembly. 

• Scalable parallel preconditioners
• Krylov subspace methods 
• Parallel Newton-based nonlinear solvers 
• Parallel timestepping (ODE) solvers 

• http://acts.nersc.gov/petsc/
• http://www-unix.mcs.anl.gov/petsc/petsc-as
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Misc Mathematical Libraries

• dense and band matrix software (ScaLAPACK) 
• http://www.netlib.org/scalapack/
• large sparse eigenvalue software (PARPACK and ARPACK) 

http://www.caam.rice.edu/software/ARPACK/

http://www.netlib.org/scalapack/scalapack_home.html
http://www.netlib.org/scalapack/
http://www.caam.rice.edu/~kristyn/parpack_home.html
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/


Gnu Scientific Library
• Complex Numbers, Roots of Polynomials
• Special Functions
• Vectors and Matrices
• Permutations
• Sorting
• BLAS Support
• Linear Algebra
• Eigensystems
• Fast Fourier Transforms
• Quadrature
• Random Numbers
• Quasi-Random Sequences
• Random Distributions
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GNU Scientific Library cont.

• Statistics
• Histograms
• N-Tuples
• Monte Carlo Integration
• Simulated Annealing
• Differential Equations
• Interpolation
• Numerical Differentiation
• Chebyshev Approximation



GNU Scientific Library cont.

• Series Acceleration
• Discrete Hankel Transforms
• Root-Finding
• Minimization
• Least-Squares Fitting
• Physical Constants
• IEEE Floating-Point
• Discrete Wavelet Transforms

• http://www.gnu.org/software/gsl/



Compilation Optimization Levels

• -O0 no optimization: Fast compilation, disables optimization
• -O2 low to moderate optimization: partial debugging support, 

disables inlining
• -O3 aggressive optimization: compile time/space intensive and/or 

marginal effectiveness; may change code semantics and results 
(sometimes even breaks codes!)

5/29/2009 www.cac.cornell.edu 16

Compiler Option #cycles per iteration
None 30.0
-O2 15.7
-O3 –qhot 12.7

A cycle of what?
Measuring Division



What the Compiler Does for You

• Operations performed at moderate optimization levels
– instruction rescheduling
– copy propagation
– software pipelining
– common subexpression elimination
– prefetching, loop transformations

• Operations performed at aggressive optimization levels
– enables –O3
– more aggressive prefetching, loop transformations
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PGI pgcc, pgcpp, pgf95
PGI Compiler Option Description
-O3 Performs some compile time and memory intensive 

optimizations in addition to those executed with -
O2, but may not improve performance for all 
programs.

-Mipa=fast, inline Creates inter-procedural optimizations. There is a 
loader problem with this option.

-tp barcelona-64 Includes specialized code for the barcelona chip.
-fast Includes: -O2 -Munroll=c:1 -Mnoframe -Mlre -

Mautoinline -Mvect=sse -Mscalarsse -
Mcache_align –Mflushz

-g, -gopt Produces debugging information.

-mp Enables the parallelizer to generate multi-threaded 
code based on the OpenMP directives.

-Minfo=mp,ipa Provides information about OpenMP, and inter-
procedural optimization.
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Intel icc ifort
Intel Compiler Option Description
-O3 More than O2, but maybe not faster
-ipo Creates inter-procedural optimizations.

-vec_report[0|...|5] Controls the amount of vectorizer 
diagnostic information.

-xW Includes specialized code for SSE and 
SSE2 instructions (recommended).

-xO Includes specialized code for SSE, 
SSE2 and SSE3 instructions.

-fast Includes: -ipo, -O2, -static DO NOT 
USE -- static load not allowed.

-g -fp debugging information produced
-openmp Enable OpenMP directives
-openmp_report[0|1|2] OpenMP parallelizer diagnostic level.
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Usually, Start Here

• PGI: -O3 -fast –tp barcelona-64 –Mipa=fast
• Intel: -O3 –xW –ipo
• But don’t exceed –O2 without checking that your output is correct.
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Compilation Exercise

• Code is from Numerical Recipes to do LU decomposition.
• Compare timings with different optimizations.
• Compare with implementation in GSL.

• Compile with different flags, including “-g”, “-O2”, “-O3”.
• Submit a job to see how fast it is.
• Recompile with new flags and try again.

• Sits in lude.tar.gz
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The Makefile

• Edit top of makefile to change compiler and flags
– COMPILER=pgcc
– FFLAGS=-O2 -tp barcelona-64
– VERSION=0

• “VERSION” is tacked onto the end of the executable names
– nr0 and gsl0 or nr1 and gsl1.

• “make” generates executables.
• “make list” looks through your directory to find all executables.
• ./nr0 –f –o output_file –n 10000

– -f tells it to tell you how you compiled the executable.
– -o is the name of an optional output file to verify results.
– -n is the size of the nxn matrix.
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More Specifically

• Edit makefile to use “FFLAGS=-g” and VERSION=0. Then “make”.
• Edit makefile to use “FFLAGS=-O2” and VERSION=1. Then “make”.
• Edit makefile to use “FFLAGS=-O3” and VERSION=2. Then “make”.
• “make list” to see that they are all there.

– ./nr0 pgcc -O2 -tp barcelona-64
– ./gsl0 pgcc -O2 -tp barcelona-64
– ./nr1 pgcc -O3 -tp barcelona-64
– ./gsl1 pgcc -O3 -tp barcelona-64
– ./nr2 pgcc -g -tp barcelona-64
– ./gsl2 pgcc -g -tp barcelona-64

• “qsub –A 20090528HPC job.sge” or “make submit”
• Find the runtimes in the output to see the speeds.

5/29/2009 www.cac.cornell.edu 23



If You Have Time

• Try other optimization flags.
– Get more flags from http://services.tacc.utexas.edu/index.php/ranger-

user-guide
– Or look at “man pgcc” or “man icc”

• Try the Intel compiler by using the modules command.
• “make list” – lists all executables in your directory with their flags
• “make count” – counts the number of lines of code for nr vs. gsl
• How can the executable tell you the compiler and flags used to 

compile it?
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From the Lab

• Why didn’t timings change much for GSL, even for debug version?
• How much faster is GSL than Numerical Recipes?
• What’s the difference in code size? (“make count”)
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Single-Strided Array Access in C and Fortran

• The order of indices indicates how an array is stored in memory.
• The wrong order is very slow.
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Fortran Example:

real*8 :: a(m,n), b(m,n), c(m,n) 
... 
do i=1,n 

do j=1,m 
a(j,i)=b(j,i)+c(j,i) 

end do 
end do 

C Example:

double a[m][n], b[m][n], c[m][n]; 
... 
for (i=0;i < m;i++){ 

for (j=0;j < n;j++){ 
a[i][j]=b[i][j]+c[i][j]; 

} 
}



Streaming SIMD Extensions

• Feature of the CPU. SSE, SSE2, SSE3, SSE4.
• Perform simple instructions in parallel on single- or double-precision 

floating point.
• Very helpful for scientific code, because it tends to loop over arrays 

of floating point.
• Need to tell compiler the CPU type in order for it to compile for SSE.
• Generally, loops with independent iterations help use SSE.
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Interprocedural Optimizations

• -ipo flags
• They examine function calls and loop structure in a single file or 

across files.
• Can inline functions, moving the function’s code where it would have 

been called.
• One version lets you run the code on test data, profiles that code, 

then you recompile, and the compiler uses what it learned from the 
test data.
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Optimization Conclusions

• Experiment with options.
• Test to ensure the program output is still correct.
• Write as little as possible yourself.
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Efficiency of Parallel Algorithms

• Parallel programs are slower.

5/29/2009 www.cac.cornell.edu 30

5 Serial
Programs

5 Parallel
Programs



But We Do It Anyway Because

• It wouldn’t fit into memory on a smaller machine.
• The calculation would take too long otherwise.

– There is one big calculation.
– It’s not about efficient computers but about helping me make the next 

decision. I don’t know yet what I want to run next.
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How Efficient Is My Program In Parallel?

• Each task does some unique computation.
• Each task does some repeated computation.
• Time to move data

– From computational buffers to/from send buffers
– Into the correct structure to start computation

• Time to send data
– across the network
– to the next core
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Speedup =
performance of serial
divided by
performance of parallel
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Efficiency = Time to complete
N serial jobs divided by
time to complete N parallel
jobs.



Program as a Black Box
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• How do you figure out how it will scale?



Example: Compute Evolution on 2D Grid
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• At each time step, compute a new value from the old value at 
neighboring points. (No, you wouldn’t do it this way. You would use an 
implicit method with Strang splitting.)
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Grid at time 0 Grid at time 1



Domain Decomposition

• Calculating values near the edge 
needs information from 
neighboring domains.

• That data must be sent at every 
time step.
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Compute and Exchange

• Time per iteration = computation time + exchange time
• This is an example of a very local communication pattern.
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Compute

Exchange



Communication Pattern
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• Now we understand the 
communication pattern 
in time and among 
tasks.

• It is local, synchronous, 
and regular.



Adding More Nodes Makes Domains Smaller
But Neighbors Still Need The Same Piece

• Percentage of time communicating 
increases.

• Called Strong Scaling.
• Efficiency drops steadily.
• Eventually, no faster to add nodes.
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Same Strong Scaling as an Equation
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• You need the time to decrease as 1/N in order to go faster. 
Boundary sending doesn’t.

• What if you increased the size of the domain as you increased N?



Example of Strong Scaling for NAMD

NAMD



Doing the Same Problem Just Larger

• Increasing the size of the problem as the size of the computing 
resource increases is called Weak Scaling.

• Given our previous model of the 2D domain, we could double the 
size as we double the compute nodes and still be just as efficient.

• But the number of network messages typically increases faster than 
the number of nodes.

• But every time you ask all nodes to wait for each other, they take 
time to synchronize.

• But the network can only handle so many messages total.
• So strong scaling is good, but it doesn’t fix everything.
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Weak Scaling Example
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DL_POLY 3 (32,000 atoms per PE)



Timings on a Real Code

• Fluent is a spectral code for fluid dynamics.
• It’s behavior is complex as the number of nodes increases.
• Look at ~train200/NetworkEstimate.xls.
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Scalability Lab

• 3D Real FFTW
• Uses FFTW2 with its MPI support
• You can run it to your heart’s content:

– -pe 16way, -pe 1way, -pe 14way
– Node counts that fit in the queue you use

• It may fail if the 1024 isn’t divisible by the task count.
• Then we plot.
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Scalability Lab - Start

• tar zxf ~train200/fftw_mpi.tar.gz
• cd fftw_mpi
• make
• Why won’t it build? If you feel like checking the next slide for the 

answer, then don’t.
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Scalability Lab - Modules

• You need the right libraries loaded to build it.
• module del mvapich
• module swap intel pgi
• module load mvapich
• module load fftw2
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Scalability – Edit the Job Script
• It starts with “-pe 16way 16”. Submit it this way.
• Submit a few jobs with other wayness and core count.
• When you have a few output files that have good results, type “make 

results”. This creates “~/fftwtimes” with the following:
– Number of cores used for the run
– Wayness
– Seconds taken
– log10(number of cores)
– log10(time)
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Scalability Lab – For More

• To make a plot
– cp ~/fftwtimes alltimes
– gnuplot alltimes.gp

• Then copy the resulting png files to your local computer to view.
• How are results different running 8 processes on 1 node versus 8 

split among two nodes or 8 on 8 nodes?
• Does “tacc_affinity” from 

http://services.tacc.utexas.edu/index.php/ranger-user-guide affect 
the speed?
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FFTW CPU Usage Every 0.01 Seconds
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Conclusions

• Communication pattern controls scalability.
• It’s all about powers, so use log-log plots.
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