
Optimization and Scalability

Drew Dolgert
CAC

29 May 2009

Intro to Parallel Computing

5/29/2009 www.cac.cornell.edu 1

Great Little Program

• What happens when I run it on the cluster?
• How can I make it faster?
• Can I run it on 40 nodes, 4000 nodes?

5/29/2009 www.cac.cornell.edu 2

Lots of Things Contribute To Finishing Your Work

• Well-posed model for the system.
• Choosing among algorithms that express that model.
• Implementation of that algorithm in code.
• Compilation of the code.
• Runtime environment.

5/29/2009 www.cac.cornell.edu 3

Realistic Concerns

• Do you have time to make it parallel?
• Do you have the time to rewrite in a faster language?
• Do you have compute hours to burn, or do they cost a lot?
• Do you have to understand the code and use it again?

5/29/2009 www.cac.cornell.edu 4

Use Libraries

• Optimized for specific architectures
• Much faster than hand-coding your own, even from NR
• Offered by different vendors (ESSL/PESSL on IBM systems, Intel

MKL for IA32, EM64T and IA64, Cray libsci for Cray systems,
SCSL for SGI)

5/29/2009 www.cac.cornell.edu 5

Libraries on Ranger

Performance Math Libs Method Libs Applications I/O
gprof fftw petsc Amber netcdf
tau GotoBLAS scalapack NAMD hdf5
papi Metis/parmetis charm++

MKL 10.0 Gamess
Gnu Scientific
Library

5/29/2009 www.cac.cornell.edu 6

Intel MKL 10.0

• Basic Linear Algebra Subroutines, such as ax+y
• LAPACK
• FFT
• All highly optimized
• Call from C, Fortran, other languages
• Module load mkl
• mpicc –l$TACC_MKL_INC –l$tacc_mkl_lib –LMKL_em64t

5/29/2009 www.cac.cornell.edu 7

GotoBLAS

• Hand-optimized BLAS
• Test to see what kind of advantage your code gets.
• Minimizes TLB misses.

5/29/2009 www.cac.cornell.edu 8

Fastest Fourier Transform in the West

• Cooley-Tukey algorithm
• Prime Factor algorithm {most efficient with small prime factors

(2,3,5, and 7)}
• Rader's algorithm for prime sizes
• split-radix algorithm (with a variation due to Dan Bernstein)
• automatic performance adaptation

5/29/2009 www.cac.cornell.edu 9

PETSc

• PETSc, the Portable, Extensible Toolkit for Scientific computation,
provides sets of tools for the parallel (as well as serial), numerical
solution of PDEs that require solving large-scale, sparse nonlinear
systems of equations. PETSc includes nonlinear and linear equation
solvers that employ a variety of Newton techniques and Krylov
subspace methods.

5/29/2009 www.cac.cornell.edu 10

http://acts.nersc.gov/glossary.html#krylov

PETSc
• Parallel vectors

– scatters (handles communicating ghost point information)
– gathers

• Parallel matrices
– several sparse storage formats
– easy, efficient assembly.

• Scalable parallel preconditioners
• Krylov subspace methods
• Parallel Newton-based nonlinear solvers
• Parallel timestepping (ODE) solvers

• http://acts.nersc.gov/petsc/
• http://www-unix.mcs.anl.gov/petsc/petsc-as
5/29/2009 www.cac.cornell.edu 11

http://acts.nersc.gov/petsc/
http://www-unix.mcs.anl.gov/petsc/petsc-as/

Misc Mathematical Libraries

• dense and band matrix software (ScaLAPACK)
• http://www.netlib.org/scalapack/
• large sparse eigenvalue software (PARPACK and ARPACK)

http://www.caam.rice.edu/software/ARPACK/

http://www.netlib.org/scalapack/scalapack_home.html
http://www.netlib.org/scalapack/
http://www.caam.rice.edu/~kristyn/parpack_home.html
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/

Gnu Scientific Library
• Complex Numbers, Roots of Polynomials
• Special Functions
• Vectors and Matrices
• Permutations
• Sorting
• BLAS Support
• Linear Algebra
• Eigensystems
• Fast Fourier Transforms
• Quadrature
• Random Numbers
• Quasi-Random Sequences
• Random Distributions

5/29/2009 www.cac.cornell.edu 13

GNU Scientific Library cont.

• Statistics
• Histograms
• N-Tuples
• Monte Carlo Integration
• Simulated Annealing
• Differential Equations
• Interpolation
• Numerical Differentiation
• Chebyshev Approximation

GNU Scientific Library cont.

• Series Acceleration
• Discrete Hankel Transforms
• Root-Finding
• Minimization
• Least-Squares Fitting
• Physical Constants
• IEEE Floating-Point
• Discrete Wavelet Transforms

• http://www.gnu.org/software/gsl/

Compilation Optimization Levels

• -O0 no optimization: Fast compilation, disables optimization
• -O2 low to moderate optimization: partial debugging support,

disables inlining
• -O3 aggressive optimization: compile time/space intensive and/or

marginal effectiveness; may change code semantics and results
(sometimes even breaks codes!)

5/29/2009 www.cac.cornell.edu 16

Compiler Option #cycles per iteration
None 30.0
-O2 15.7
-O3 –qhot 12.7

A cycle of what?
Measuring Division

What the Compiler Does for You

• Operations performed at moderate optimization levels
– instruction rescheduling
– copy propagation
– software pipelining
– common subexpression elimination
– prefetching, loop transformations

• Operations performed at aggressive optimization levels
– enables –O3
– more aggressive prefetching, loop transformations

5/29/2009 www.cac.cornell.edu 17

PGI pgcc, pgcpp, pgf95
PGI Compiler Option Description
-O3 Performs some compile time and memory intensive

optimizations in addition to those executed with -
O2, but may not improve performance for all
programs.

-Mipa=fast, inline Creates inter-procedural optimizations. There is a
loader problem with this option.

-tp barcelona-64 Includes specialized code for the barcelona chip.
-fast Includes: -O2 -Munroll=c:1 -Mnoframe -Mlre -

Mautoinline -Mvect=sse -Mscalarsse -
Mcache_align –Mflushz

-g, -gopt Produces debugging information.

-mp Enables the parallelizer to generate multi-threaded
code based on the OpenMP directives.

-Minfo=mp,ipa Provides information about OpenMP, and inter-
procedural optimization.

18

Intel icc ifort
Intel Compiler Option Description
-O3 More than O2, but maybe not faster
-ipo Creates inter-procedural optimizations.

-vec_report[0|...|5] Controls the amount of vectorizer
diagnostic information.

-xW Includes specialized code for SSE and
SSE2 instructions (recommended).

-xO Includes specialized code for SSE,
SSE2 and SSE3 instructions.

-fast Includes: -ipo, -O2, -static DO NOT
USE -- static load not allowed.

-g -fp debugging information produced
-openmp Enable OpenMP directives
-openmp_report[0|1|2] OpenMP parallelizer diagnostic level.
5/29/2009 www.cac.cornell.edu 19

Usually, Start Here

• PGI: -O3 -fast –tp barcelona-64 –Mipa=fast
• Intel: -O3 –xW –ipo
• But don’t exceed –O2 without checking that your output is correct.

5/29/2009 www.cac.cornell.edu 20

Compilation Exercise

• Code is from Numerical Recipes to do LU decomposition.
• Compare timings with different optimizations.
• Compare with implementation in GSL.

• Compile with different flags, including “-g”, “-O2”, “-O3”.
• Submit a job to see how fast it is.
• Recompile with new flags and try again.

• Sits in lude.tar.gz

5/29/2009 www.cac.cornell.edu 21

The Makefile

• Edit top of makefile to change compiler and flags
– COMPILER=pgcc
– FFLAGS=-O2 -tp barcelona-64
– VERSION=0

• “VERSION” is tacked onto the end of the executable names
– nr0 and gsl0 or nr1 and gsl1.

• “make” generates executables.
• “make list” looks through your directory to find all executables.
• ./nr0 –f –o output_file –n 10000

– -f tells it to tell you how you compiled the executable.
– -o is the name of an optional output file to verify results.
– -n is the size of the nxn matrix.

5/29/2009 www.cac.cornell.edu 22

More Specifically

• Edit makefile to use “FFLAGS=-g” and VERSION=0. Then “make”.
• Edit makefile to use “FFLAGS=-O2” and VERSION=1. Then “make”.
• Edit makefile to use “FFLAGS=-O3” and VERSION=2. Then “make”.
• “make list” to see that they are all there.

– ./nr0 pgcc -O2 -tp barcelona-64
– ./gsl0 pgcc -O2 -tp barcelona-64
– ./nr1 pgcc -O3 -tp barcelona-64
– ./gsl1 pgcc -O3 -tp barcelona-64
– ./nr2 pgcc -g -tp barcelona-64
– ./gsl2 pgcc -g -tp barcelona-64

• “qsub –A 20090528HPC job.sge” or “make submit”
• Find the runtimes in the output to see the speeds.

5/29/2009 www.cac.cornell.edu 23

If You Have Time

• Try other optimization flags.
– Get more flags from http://services.tacc.utexas.edu/index.php/ranger-

user-guide
– Or look at “man pgcc” or “man icc”

• Try the Intel compiler by using the modules command.
• “make list” – lists all executables in your directory with their flags
• “make count” – counts the number of lines of code for nr vs. gsl
• How can the executable tell you the compiler and flags used to

compile it?

5/29/2009 www.cac.cornell.edu 24

http://services.tacc.utexas.edu/index.php/ranger-user-guide
http://services.tacc.utexas.edu/index.php/ranger-user-guide

From the Lab

• Why didn’t timings change much for GSL, even for debug version?
• How much faster is GSL than Numerical Recipes?
• What’s the difference in code size? (“make count”)

5/29/2009 www.cac.cornell.edu 25

Single-Strided Array Access in C and Fortran

• The order of indices indicates how an array is stored in memory.
• The wrong order is very slow.

5/29/2009 www.cac.cornell.edu 26

Fortran Example:

real*8 :: a(m,n), b(m,n), c(m,n)
...
do i=1,n

do j=1,m
a(j,i)=b(j,i)+c(j,i)

end do
end do

C Example:

double a[m][n], b[m][n], c[m][n];
...
for (i=0;i < m;i++){

for (j=0;j < n;j++){
a[i][j]=b[i][j]+c[i][j];

}
}

Streaming SIMD Extensions

• Feature of the CPU. SSE, SSE2, SSE3, SSE4.
• Perform simple instructions in parallel on single- or double-precision

floating point.
• Very helpful for scientific code, because it tends to loop over arrays

of floating point.
• Need to tell compiler the CPU type in order for it to compile for SSE.
• Generally, loops with independent iterations help use SSE.

5/29/2009 www.cac.cornell.edu 27

Interprocedural Optimizations

• -ipo flags
• They examine function calls and loop structure in a single file or

across files.
• Can inline functions, moving the function’s code where it would have

been called.
• One version lets you run the code on test data, profiles that code,

then you recompile, and the compiler uses what it learned from the
test data.

5/29/2009 www.cac.cornell.edu 28

Optimization Conclusions

• Experiment with options.
• Test to ensure the program output is still correct.
• Write as little as possible yourself.

5/29/2009 www.cac.cornell.edu 29

Efficiency of Parallel Algorithms

• Parallel programs are slower.

5/29/2009 www.cac.cornell.edu 30

5 Serial
Programs

5 Parallel
Programs

But We Do It Anyway Because

• It wouldn’t fit into memory on a smaller machine.
• The calculation would take too long otherwise.

– There is one big calculation.
– It’s not about efficient computers but about helping me make the next

decision. I don’t know yet what I want to run next.

5/29/2009 www.cac.cornell.edu 31

How Efficient Is My Program In Parallel?

• Each task does some unique computation.
• Each task does some repeated computation.
• Time to move data

– From computational buffers to/from send buffers
– Into the correct structure to start computation

• Time to send data
– across the network
– to the next core

5/29/2009 www.cac.cornell.edu 32

5/29/2009 www.cac.cornell.edu 33

Speedup =
performance of serial
divided by
performance of parallel

5/29/2009 www.cac.cornell.edu 34

Efficiency = Time to complete
N serial jobs divided by
time to complete N parallel
jobs.

Program as a Black Box

5/29/2009 www.cac.cornell.edu 35

• How do you figure out how it will scale?

Example: Compute Evolution on 2D Grid

5/29/2009 www.cac.cornell.edu 36

4

-1

-1

-1-1

• At each time step, compute a new value from the old value at
neighboring points. (No, you wouldn’t do it this way. You would use an
implicit method with Strang splitting.)

-1

-1

-1-1

Grid at time 0 Grid at time 1

Domain Decomposition

• Calculating values near the edge
needs information from
neighboring domains.

• That data must be sent at every
time step.

5/29/2009 www.cac.cornell.edu 37

4

-
1

-
1

-
1

-
1

Compute and Exchange

• Time per iteration = computation time + exchange time
• This is an example of a very local communication pattern.

5/29/2009 www.cac.cornell.edu 38

Compute

Exchange

Communication Pattern

5/29/2009 www.cac.cornell.edu 39

• Now we understand the
communication pattern
in time and among
tasks.

• It is local, synchronous,
and regular.

Adding More Nodes Makes Domains Smaller
But Neighbors Still Need The Same Piece

• Percentage of time communicating
increases.

• Called Strong Scaling.
• Efficiency drops steadily.
• Eventually, no faster to add nodes.

5/29/2009 www.cac.cornell.edu 40

Same Strong Scaling as an Equation

5/29/2009 www.cac.cornell.edu 41

• You need the time to decrease as 1/N in order to go faster.
Boundary sending doesn’t.

• What if you increased the size of the domain as you increased N?

Example of Strong Scaling for NAMD

NAMD

Doing the Same Problem Just Larger

• Increasing the size of the problem as the size of the computing
resource increases is called Weak Scaling.

• Given our previous model of the 2D domain, we could double the
size as we double the compute nodes and still be just as efficient.

• But the number of network messages typically increases faster than
the number of nodes.

• But every time you ask all nodes to wait for each other, they take
time to synchronize.

• But the network can only handle so many messages total.
• So strong scaling is good, but it doesn’t fix everything.

5/29/2009 www.cac.cornell.edu 43

Weak Scaling Example

5/29/2009 www.cac.cornell.edu 44

DL_POLY 3 (32,000 atoms per PE)

Timings on a Real Code

• Fluent is a spectral code for fluid dynamics.
• It’s behavior is complex as the number of nodes increases.
• Look at ~train200/NetworkEstimate.xls.

5/29/2009 www.cac.cornell.edu 45

5/29/2009 www.cac.cornell.edu 46

0.00E+00

2.50E+01

5.00E+01

7.50E+01

1.00E+02

1 100 10000 1000000 100000000

Th
ro

ug
hp

ut
 [M

bi
ts

/s
]

Message Size [bits]

TCP Throughput

Theory
Win32

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

10 100 1000

M
op

/s

Process Count

Scaling for NAS Kernels

mg cg

ep ft

is lu

Different Algorithms Scale Differently

5/29/2009 www.cac.cornell.edu 47

Scalability Lab

• 3D Real FFTW
• Uses FFTW2 with its MPI support
• You can run it to your heart’s content:

– -pe 16way, -pe 1way, -pe 14way
– Node counts that fit in the queue you use

• It may fail if the 1024 isn’t divisible by the task count.
• Then we plot.

5/29/2009 www.cac.cornell.edu 48

Scalability Lab - Start

• tar zxf ~train200/fftw_mpi.tar.gz
• cd fftw_mpi
• make
• Why won’t it build? If you feel like checking the next slide for the

answer, then don’t.

5/29/2009 www.cac.cornell.edu 49

Scalability Lab - Modules

• You need the right libraries loaded to build it.
• module del mvapich
• module swap intel pgi
• module load mvapich
• module load fftw2

5/29/2009 www.cac.cornell.edu 50

Scalability – Edit the Job Script
• It starts with “-pe 16way 16”. Submit it this way.
• Submit a few jobs with other wayness and core count.
• When you have a few output files that have good results, type “make

results”. This creates “~/fftwtimes” with the following:
– Number of cores used for the run
– Wayness
– Seconds taken
– log10(number of cores)
– log10(time)

5/29/2009 www.cac.cornell.edu 51

Scalability Lab – For More

• To make a plot
– cp ~/fftwtimes alltimes
– gnuplot alltimes.gp

• Then copy the resulting png files to your local computer to view.
• How are results different running 8 processes on 1 node versus 8

split among two nodes or 8 on 8 nodes?
• Does “tacc_affinity” from

http://services.tacc.utexas.edu/index.php/ranger-user-guide affect
the speed?

5/29/2009 www.cac.cornell.edu 52

http://services.tacc.utexas.edu/index.php/ranger-user-guide

FFTW CPU Usage Every 0.01 Seconds

5/29/2009 www.cac.cornell.edu 53

Conclusions

• Communication pattern controls scalability.
• It’s all about powers, so use log-log plots.

5/29/2009 www.cac.cornell.edu 54

	Optimization and Scalability
	Great Little Program
	Lots of Things Contribute To Finishing Your Work
	Realistic Concerns
	Use Libraries
	Libraries on Ranger
	Intel MKL 10.0
	GotoBLAS
	Fastest Fourier Transform in the West
	PETSc
	PETSc
	Misc Mathematical Libraries
	Gnu Scientific Library
	GNU Scientific Library cont.
	GNU Scientific Library cont.
	Compilation Optimization Levels
	What the Compiler Does for You
	PGI pgcc, pgcpp, pgf95
	Intel icc ifort
	Usually, Start Here
	Compilation Exercise
	The Makefile
	More Specifically
	If You Have Time
	From the Lab
	Single-Strided Array Access in C and Fortran
	Streaming SIMD Extensions
	Interprocedural Optimizations
	Optimization Conclusions
	Efficiency of Parallel Algorithms
	But We Do It Anyway Because
	How Efficient Is My Program In Parallel?
	Slide Number 33
	Slide Number 34
	Program as a Black Box
	Example: Compute Evolution on 2D Grid
	Domain Decomposition
	Compute and Exchange
	Communication Pattern
	Adding More Nodes Makes Domains Smaller�But Neighbors Still Need The Same Piece
	Same Strong Scaling as an Equation
	Example of Strong Scaling for NAMD
	Doing the Same Problem Just Larger
	Weak Scaling Example
	Timings on a Real Code
	Slide Number 46
	Different Algorithms Scale Differently
	Scalability Lab
	Scalability Lab - Start
	Scalability Lab - Modules
	Scalability – Edit the Job Script
	Scalability Lab – For More
	FFTW CPU Usage Every 0.01 Seconds
	Conclusions

