g8 Cornell University

7 Center for Advanced Computing

Debugging and Profiling

Nate Woody

5/27/2009 www.cac.cornell.edu 1

cn‘_) Cornell University

i3

Center for Advanced Computing

Debugging

 Debugging is a methodical process of finding and reducing the
number of bugs, or defects, in a computer program or a piece of
electronic hardware thus making it behave as expected. Debugging
tends to be harder when various subsystems are tightly coupled, as
changes in one may cause bugs to emerge in another.

« A debugger is a computer program that is used to test and debug
other programs.

e This can be hard enough with a single local process and but get's
many times more complicated with many remote processes
executing asynchronously. This is why Parallel Debuggers exist.

5/27/2009 www.cac.cornell.edu 2

5/% Cornell University

—
EE) Center for Advanced Computing

Debugging Requirements

* In general, while debugging you may need to:

Step through code

Set/Run to breakpoints

Examine variable values at different points during execution
Examine the memory profile/usage

Provide source-level information after a crash

 For MPI and OpenMP Code we have additional requirements
— All of the above for remote processes

Examine MPI message status

— Step individual processes independent of the rest

5/27/2009 www.cac.cornell.edu

5o/ Cornell University
EE) Center for Advanced Computing

Profiling

« Software performance analysis

Profiling is examining where a given code is spending it’s time so that
you can understand the performance characteristics of a program or
set of functions.

There are several levels of profiling, but we will talking about function
level profiling which provides information on the frequency and duration
of function calls.

A profile is a statistical summary of function calls, generally you get the
number of times each function was called and the total amount of time
spend in the function.

The goal of profiling is to identify “hot spots”, which are functions that
occupy an inordinate amount of the total time of a program, which
means that optimization of these functions will provide the greatest
benefit.

5/27/2009 www.cac.cornell.edu

g8Y, Cornell University
(@ :

Center for Advanced Computing

Profiling
« Flat profile — total time and number of calls of function
70 curridiatve SEII SEII total
time seconds seconds calls ms/call ms/call name
33.34 0.02 0.02 7208 0.00 0.00 open
16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25
memccpy
16.67 0.05 0.01 7 1.43 1.43 write
« Call graph — See how a function was called
index % time self children called name
[1] 100. 00.00 0.05 1/1 start [1]
0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on_exit [28]
0.00 0.00 1/1 exit [59]
0.00 0.05 1/1 start [1]
[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]

5/27/2009 www.cac.cornell.edu 5

5o/ Cornell University
EE) Center for Advanced Computing

Tools

* Debugging requires a debugger, of which many are available.
— Your development environment may well have a built-in debugger
available. Eclipse is a good a good example, which provides a nice
interface to a debugger.

« GDB - The GNU Project Debugger

— Universally available debugger that can debug C, C++, and Fortran
code (if you can compile it with GCC, you should be able to debug it
with gdb).

— GDB has a command line interface to walking through code that takes a
little getting used to.

— Your code must be compiled in debug mode before you can use GDB,
you can't just start debugging a binary.

5/27/2009 www.cac.cornell.edu

g5|® Cornell University
EE) Center for Advanced Computing

Debugging with GDB

e Step 1 — build with debugging symbols.
— $ g++ -ggdb —Wall —o test main.cc
« Step 2 — launch the application inside the debugger
— $ gdb test
» Step 3 — Run the application
— $ (gdb) run
» Step 4 — Examine the backtrace
— $(gdb) backtrace
» Step 5 — Examine the parameter values
— $ (gdb) x Ox7fffa408c3d4

5/27/2009 www.cac.cornell.edu 7

cn‘_) Cornell University

D

Center for Advanced Computing

Breakpoints and stepping

* Previously, we just used the debugger to examine what happened
after the program exploded. It may be more useful to examine the
program before it blows up, which can be done by setting
breakpoints and stepping.

» A breakpoint halts execution of the program at a specific source line.

— (gdb) break LinkedList<int>::remove

» This can be made conditional by using the “condition” statement, so
that the breakpoint only occurs when a specific condition is meant.

— (gdb) condition 1 item_to_remove==1

* Re start using run and execution will be halted at the breakpoint.
Execute one line of code by using step.
— (gdb) step

5/27/2009 www.cac.cornell.edu 8

(EFTU‘ Cornell University

2§ Center for Advanced Computing

GDB commands summary

run — execute the program from beginning.
backtrace — produce the backtrace from the last fault

break <line number> or break <function-name> - break at the line
number or at the use of the funciton

delete <breakpoint number> - remove a breakpoint

step — step to next line of code (step into function if possible)
next — step to next line of code (do not step into function)

list — print source list (list <function> to print a specific function)
print <variable name> - print the value stored by the variable
continue — run until next break point

quit — quit

help — get help on any command

5/27/2009 www.cac.cornell.edu

5o/ Cornell University
EE) Center for Advanced Computing

Gprof for profiling

o Gprof is used for monitoring the performance of a FUNCTIONAL
program to help guide optimization efforts.

— It's not a debugger, make sure you're program is working the way you
want before you think about profiling.

— Optimization often results in less readable, modular, and maintainable
code, the best optimization strategy may be to not optimize.

* In order to get profiling output, compile with the —pg option.

— Generally, you'll want to use all the other compile flags that you are
using, otherwise you may be profiling code that performs differently than
it does. However, in most cases, this is not a huge issue. Try it both
ways if you are concerned.

5/27/2009 www.cac.cornell.edu 10

cn‘_) Cornell University

@

Center for Advanced Computing

A Gprof session

« Compile with profiling on
— $ gcc —pg —o prof _test prof_test.c

* Run the binary normally, which will generate a gmon.out file
— $./prof _test

* Run gprof on the binary to generate the results
— $ gprof prof_test >> profile_results.txt

 Examine the results
— vi profile_results.txt

5/27/2009 www.cac.cornell.edu 11

5o/ Cornell University
EE) Center for Advanced Computing

Profiling Caveats

« Basically, you're looking for functions that occupy a large amount of
system time and/or are called a inordinate amount of times.

— Functions that takes lots of time are candidates for optimization,
particularly if they are called heavily. This will give you the best bang for

the buck.

— Functions that are called many times but don’t occupy much system
time are probably losers for optimization. You won’t see much benefit

from optimizing these even if you do!

 You should be careful about 1/0!

— /O wait is not reported in profiling numbers, so examine timing
information in 1/0 heavy functions carefully.

» Be cautious In interpretation of absolute time
 Don’t shortchange the sample data when generating profile data

5/27/2009 www.cac.cornell.edu 12

Cornell University

Center for Advanced Computing

Results

Flat profile:

Each sample counts as 0.01 seconds.

% curmlative self self total

time seconds=s seconds calls msfecall ms/call name
33.34 0.0z 0.0z 7208 0.00 0.00 open
16.67 0.03 o.o1 244 0.04 0.12 offtine
16.67 0.04 o.o01 =1 1.25 1.25 rmemccpy
16.67 o.05 o.o01 7 1.43 1.43 write
16.67 O.0a6 0.01 moount
o.00 0.06 o.on 236 0.00 0.00 tzset
o.00 0.06 o.on 192 0.00 0.00 tolower
o.oo0 0.06 o.on 47 0.0o0 0.00 strlen
o.oo0 0.06 o.on 45 0.0o0 0.00 strchr
o.oo0 0.06 o.on 1 0.0o0 S50.00 main
o.oo0 0.06 o.on 1 0.0o0 0.00 memcpy
o.oo0 0.06 o.on 1 0.0o0 10.11 print
o.oo0 O.06 o.on 1 0.0o0 0.00 profil
o.oo0 O.06 o.on 1 0.0o0 E0.00 report

* Only 5 functions take up any appreciative time in this report, so we
would only start with these. A ton of open calls are made (30x more
than anything else, | wonder why). 8 memcopy’s take up 16% of the
total execution time.

5/27/2009 www.cac.cornell.edu 13

Cornell University

Center for Advanced Computing

GDB/Gprof Lab

 The goal of this lab is to make sure everyone can successfully use
and understand GDB and Gprof. Three source files are provided for
practice and a Makefile is provided for help (try not to use it).

— ~train200/profile_debug.tar.gz

« Examplel.c — a simple profiling example. Use gcc to build a binary with profiling
enabled (a Makefile is provided if you have trouble). Run gprof and examine the flat
and call graph. Try and figure out the structure of the program from the call graph
and verify by looking at the source. Alter the program to work without the increment
function and verify the results using the call graph.

 Linpack.c — compile using the Makefile (make profile) to get an example2 binary.
Run gprof on the resultant binary, what function is the target for optimization?

« Example3.c —a buggy mangled printer. Use the debugger to identify where the
problem is and fix it.

« Example4d.c — a buggy echo machine. This is actually a little tougher than you might
expect as you get buried in c library functions and need to work your way back out to

step.
5/27/2009 www.cac.cornell.edu 14

Instrumenting code for logging and
Debugging

5/27/2009 www.cac.cornell.edu 15

g5|® Cornell University
EE) Center for Advanced Computing

Debugging and Logging

« GDB is a debugger that you would use when you have identified a
problem in your code and you're trying to isolate and identify the
source of the problem.

« Printf() debugging is the debugging style where you add all sorts of
printf(), cout, print, System.out.printin(), etc to dump information to
stdout or stderr to track what the problem is.

— Learned folks often disapprove of such nonsense and suggest that
practical use of a debugger is vastly more efficient.

— Practical folks will admit to it’s utility and point to the fact that it allows
continuous monitoring of the code outside of a debugger

— Both are right, and with some simple setup, you can add
debugging/logging statements to your code that will be useful,
informative, and unintrisive.

5/27/2009 www.cac.cornell.edu 16

5o/ Cornell University
EE) Center for Advanced Computing

Printf Debugging

* First, let's take a look at what the much feared printf debugging
looks like.

int main (int argc, char** argv) {
printf(“Starting main...”);
int iterations = 5;
int val = 0, val2=0;
printf(“Initialized val to %d and val2 to %d”, val, val2);
while (iterations --) {
val = sometime();
print(*Sometime() returned %d\n”, val);
val2 = moretime();
printf(“moretime() returned %d\n”, val);

}

printf(“Exiting main, iterations ==%s\d”, iterations);

5/27/2009 www.cac.cornell.edu 17

5o/ Cornell University
EE) Center for Advanced Computing

Printf Debugging

« With this example, we have pretty much covered the code with 5
printf statements. This results in several problems that can occur.

— You have drastically increased the number of lines of code, and it’s
quite easy to make an error in one of these new lines (mess up a format
string and you’re debugging breaks your program). The number of lines
required to get debugging level information is very high.

— There is no easy way to remove these lines from your code without
potentially breaking something. If you insert these lines in the middle of
a debugging session, if they aren’t manually removed this function will
forever emit all of this stuff on stdout. | hope no meaningful data goes
to stdout anywhere.

— Writing to stdout slows down your program significantly, having a printf
in the middle of a tight for loop will have a big impact on performance.

5/27/2009 www.cac.cornell.edu 18

g5|® Cornell University
EE) Center for Advanced Computing

Advantages of Printf Debugging

 There are some cases where printf-style debugging is useful.

— Long running applications where erronous results are produced. Using
a debugger is most useful when the identifying crashes or once the
function/class/etc that has a bug is identified. Printf may help you
identify the function or class where deviations occur.

— It allows you to examine optimized code instead of code with debugging
symbols added. It also let’s you get output while running at full scale for
parallel applications. This is occasionally useful.

— Running multi-threaded or on remote machines. Connecting a
debugger to a remote process can be difficult and tracking forks etc is
non-trivial.

— Help identify transient and/or timing related bugs.

5/27/2009 www.cac.cornell.edu 19

g5|® Cornell University
EE) Center for Advanced Computing

What to do

* Printf debugging certainly has advantages, but it also creates
ugliness in your code as well potentially the source of problems
unrelated to the one you're trying to solve!

 These can be mitigated with a few easy steps
— Don’t ever use stdout, use stderr (unbuffered, seperation, etc)
— Don't call printf directly, use a macro/function/class that handles the
output safely.

— Use “levels”, which are the criticality of the problem and range from
debug (the lines we showed earlier) to warning (possible erronous
values). You can then control when and where these various levels are

printed.

5/27/2009 www.cac.cornell.edu 20

5o/ Cornell University
EE) Center for Advanced Computing

Logging Libraries

 What we're actually talking about is “logging”.

— Logging is the process of computer systems logging state changes and
informational content to a central location where they can be recorded

and examined later.
— Here’s a chunk of an up2date log (stashed in /var/log/up2date)

[Mon May 18 09:53:49 2009] up2date logging into up2date server

[Mon May 18 09:53:50 2009] up2date succesfully retrieved authentication token
[Mon May 18 09:55:20 2009] up2date Updating pacakge profile

[Mon May 18 09:57:25 2009] up2date Updating package profile

* There are libraries that we can use to get safe, readable logging
added to your code very easily.

5/27/2009 www.cac.cornell.edu 21

g5|® Cornell University
EE) Center for Advanced Computing

Log4Blah

Log4J is an Apache foundation project that provides logging utility

for Java. The interface to this has now been copied to many
different languages.

Log4Net —is for .NET and works with C++, C#, etc.
Log4CXX —is for C++ and works for most platforms.
Log4c —is for C

Log4py and log4p- is for python

Log4Ruby — you get the idea, yes?

Other logging libraries exist, Log4J is the only one that crosses so

many different languages, which makes it a little easier to use.

As far as | know if you're using fortran, you'll need to implement the

logging yourself (if someone knows differently, please let me know).

5/27/2009 www.cac.cornell.edu 22

(EFTU‘ Cornell University

2§ Center for Advanced Computing

Log4J Features

« Automatic formatting of output with appending timestamps and who
emitted the log.

« Alibrary of “Appenders” which are objects that control how and
where a log line is written.

— RollingLogAppender — logs to a file which rolls when it reaches a certain
Size or date.

— SocketAppender — logs over a socket to a log server
— DatabaseAppenders — log information to a database
* Itis a best-effort fail-stop system.

— This means that it will not emit unexpected expectations causing your
application to crash but will try really hard to actually log your info.

It provides easy control of logging level at runtime

5/27/2009 www.cac.cornell.edu 23

5o/ Cornell University
EE) Center for Advanced Computing

What does it look like

* Replacing printf lines with log lines doesn’t significantly change the
look of the program, some extra boilerplate and a logger object must
be grabbed.

int main (int argc, char** argv) {

log4c_init();

mycat = log4c_category_get(“sillyapp.main");

int iterations = 5;

log4c_category log(mycat, LOG4C_PRIORITY_DEBUG,"Debugging app 1
- loop %d", iterations);

int val = 0, val2=0;

log4c_category log(mycat, LOG4C PRIORITY_ERROR, “Some error”

printf(“Initialized val to %d and val2 to %d”, val, val2);

5/27/2009 www.cac.cornell.edu 24

Cornell Umvermtv

Center for Advanced Computing

[

Configuration

<?xml wersion="1.0" encoding="utf-3" ¥>
H <configurations>
é <oonfigiections:>
<gection name="logdnet" type="logdnet.Config.LogdletConfiguration3ectionHandler, logdnet™ />
- <fconfigl3ectionss
= <logdnet:
<!==Thi=z iz & rolling log file. When the file exceeds 100kkh, it'=s rool to & new file, keeping at most 10 files.
= <appender name="REollingLogFilelppender™ type="logdnet.ippender.BollingFilelippender®™:
<file wvaluse="c: MNatelsFolling.txt™ />
<appendToFile valus="trus"™ />
<max3izeRollBackups valus="10" />
cmwaxXximuFilefize walue="100" />
<rolling3tyle valus="3ize"™ />
<ztaticLogFilelame valus="trus"™ />
= <layout type="logdnet.Layout.PatternLayout™:>
<header wvalue="[Header] s#15;
"™ />
<footer wvaluse="[Footer] £#13; 810" />

<oonverzionFattern value="idate [3thread] %-S5level %logger [%$ndc] - (messageinewline™ />
- </ layout >
- </ appender:>
<!==Thi=z iz where we specify what loggers to use and at what level they should log.-—->
< !==Thiz says that anvything DEETG should he nggedP—>
= <rooti

<level walus="DEEUG" /=

<appender-ref ref="RollingLogFilelppender™ />
- <froot>

o</ logdnets

Lefoonfiguration>

5/27/2009 www.cac.cornell.edu 25

g5|® Cornell University
EE) Center for Advanced Computing

Results

 Log messages are then shunted to the appropriate location and
formatted prior to putting them in the log.

 We can fancy things up and add headers and footers, as well as all
sorts of other fanciness (log different levels to different
files/appenders).

[Header]

2009-05-13 15:21:14,315 [11] WARN Logger.Program Pretty sure I'm getting ready to

die!

2009-05-13 15:21:14,331 [11] ERROR Logger.Program uh-oh, no | wasn't!

2009-05-13 15:21:14,331 [11] FATAL Logger.Program blech. Out
[Eooter]

 There are many programs out there designed for “log file analysis”,
aka handling large nicely formatted log files.

5/27/2009 www.cac.cornell.edu 26

Cornell University

Center for Advanced Computing

Conclusion

* Ad hoc printf debugging probably causes as many problems as it
solves

* Nonetheless, it can be highly useful in some cases.

* A few easy steps can make this style of debugging much less
problematic and the early inclusion of a logging library will save you
a lot of time down the line.

 The log4J line of loggers are a nice suite of tools that serve many
different languages with a common interface and actions.

5/27/2009 www.cac.cornell.edu 27

g8 Cornell University

7 Center for Advanced Computing

DDT
Distributed Debugging Tool

Parallel Debugging on Ranger

5/27/2009 www.cac.cornell.edu 28

Cornell University

Center for Advanced Computing

DDT

« DDT - Distributed Debugging Tool (www.allinea.com)

« A graphical debugger for scalar, multi-threaded and parallel
applications for C, C++ and Fortran

« DDT'’s provides graphical process grouping functionality. DDT
makes it really easy to assign arbitrary processes into groups which
can be acted on separatly.

* Provides memory debugging features as well, things like checking
pointers, array bounds, etc.

* Provides functionality to interact reasonable with STL components
(ie you can see what a map actually contains) and create views for
your own objects.

» Allows viewing of MPI message queues for running processes

5/27/2009 www.cac.cornell.edu 29

(EFTU‘ Cornell University

2§ Center for Advanced Computing

DDT Demo

« By far the best way to show what DDT can do is to start it up and
look at it and show some things with it. Once we do this, we’ll have
everybody log in and make sure they can DDT started.

 We’'ll talk about:

— Creating and altering groups

— Stepping groups and processes

— Show Cross-group comparison

— Show Memory Usage/Profiling

— Show MPI Queues

— Show multi-dimensional array viewer

5/27/2009 www.cac.cornell.edu 30

(EFTU‘ Cornell University

2§ Center for Advanced Computing

Starting DDT

e Login to ranger with an X tunnel
$ ssh —X ranger.tacc.utexas.edu

 We need a binary compiled with debugging flags. If you don’t have
a binary already on ranger, you can get one from the train00
directory
login3% mkdir ~/ddt
login3$ cp ~train00/ddt_debug/debug_code.f .
 Ensure you have your preferred compiler loaded

login3% module list

login3% module unload mvapich
login3% module swap pgi intel
login3% module load mvapich

5/27/2009 www.cac.cornell.edu 31

so/v Cornell University
(&)

Center for Advanced Computing

Starting DDT

« Compile with debugging flags

login3% cd ~/ddt

login3% mpif90 —g —O0 debug_code.f —o ddt_app
 Load the DDT module

login3% module list

login3% module load ddt

login3% module list

login3% echo $DDTROQOT
e« Start DDT

login3% ddt ddt_app

5/27/2009 www.cac.cornell.edu 32

Cornell Uni 1ver=31tv

2 Center for Advanced Computing

Starting DDT

R = =
Session Control Search View Help

> W }{'}."l‘lfulﬂ

HCurrent Group:

~|Foeus on current: ® Group O Process O Thread ‘ _| Step Threads Together|

Project -Ja'-.-'igatur 1 Local Variables
Project Files |

Locals ‘ Current Line(s) |Stack |
@ Project Files

| variable Name |Value |
= Source Tree
<8 Header Files
+ 8 Source Files

\ B DDT - Welcome E]

Welcome to DDT

Click! —]

‘What would you like to do?

> Bun and Cebug a Program]

? | Attachto a Running Program]

Open a Core File]

allinea

soaLe

Type: none selected

=l stdout |Stderr |Sendstandard mput Breakpoints |
Currently Displaying: | Al bt

Cancel]

Process Qutput

5/27/2009 www.cac.cornell.edu 33

Cornell University

Center for Advanced Computing

Running ajob

. 3 Allinea Distributed Debugging Tool v2.3.1
Session Control Search View Help

[|| .{1_}{}{'} lllflll‘

|Current Group: Focus on current; ® Group O Process O Thread Step Threads Together'
Project Navigator :

Local Yariahles

Project Files

EPmJect Files “ariahle Mame lVa\ue }
=& Source Tree

+& Header Files

+8 Source Files

Logals | Current Line(s) | Stack

Add any arguments

b DDT - Run (queue submission mode) (x|
\ Application: /share/home/00940/4gE0187 1/ddt'ddt_app EJ
N
Arguments:

Run Mithout MP| Support

Ranger defau It \-\:> Options: mwapich 1 MPI, use gueue | Change.. .

Glueue Submission Parameters: Queue=development, YWall Clock Limit=0:30:00, Project=(undefined) Change..

MNumber of proce 32 ﬁ Mumber of threads (CpentAP only): | 1 ‘3

deanced >
Currently Sui’rzit | Cancel

Sets number
of nodes

Click when ready
to submit job

s
=
j=X
=

2

o0

{ig]

©

o

=]

[

DoT

5/27/2009 www.cac.cornell.edu 34

Account Name

Allinea Distributed Debugging Tool v2.3.1

(=/=x]

Session Control Search Yiew Help

R WA NIy TY)}

Current Group: Focus on current: ® Group O Process O Thread

Project Navigator
Project Files
Project Files
+-8 Source Tree

= Header Files
=& Source Files

Provide
allocation id
(gsub -A value)
then click OK

5/27/2009

| stdout
Currenthy

Step Threads Together
Local Variables
Locals | CurrentLine(s) |/ Stack
Yariable MName |Value |
) DDT - Run (queue submission mode) E]

Application: |/sharefhome/00940/tg30187 1/ddt/ddt_app
Arguments:
ithout WPI Support

Ciptions: mvapich 1 MPI, use queue Change.

GQueue Submission Parameters: Queue=development, Wall Clack Limit=0:30:00, P

Mumber of processes |32 i] Mumber of threads (QpentiP only): 1

Advanced ==

Queue Submission Parameters

Glueue:

| Proger—>
3

-
=]
=1
I
5
0
0
i
o
o

o

www.cac.cornell.edu

Wall Clock. Limit:

development

3000

ncel —

QK Cancel

poT

35

Cornell University
Center for Advanced Computing

[

Allinea Distributed Debugging Tool v2.3.1

§essiun Control Search View Help
jrn-BHGHEEFERELE
'_Current Group: Focus on current: ® Group O Process O Thread | Step Threads Together:
Project MNavigator Local Variables
Project Files Locals | CurrentLine(s) | Stack
[EProject Files [Variable Name | value |
| =8 Source Tree |
| = B Header Flles
+ & Source Files
9 DDT - Job Submitted [x]
Your debugging job has been submitted to the gueue. DOT will continue automatically once the job has been started.
You may cancel the job by closing ODT or clicking on the button below:.
ACTIVE JORS
JOBID JOBNAME USERMAME SIATE CORE HOST QUELE REMAINING STARTTIME
0 active jobz = 0 of 3888 hosts ((.00 ¥)
WATTING JUBS
JORID JORNAME USERMAME STATE CORE HOST QUELE WOLIMIT QUEUETTME -
571838 DDTJOB 301871 Waiting 32 2 development 00:30:00 Tue Mar 3 12:43:51 —
(WATTTING JOBS WITH JOB DEPEMDENCIES—-
JOBID JOBNAME USERNMAME SIATE CORE HOST QUELE WCLIMIT QUEUETIME
UNSCHEDULED JOBS——————————————m——
JOBID JOBNAME USERMAME SIATE CORE HOST QUEDE WCLIMIT QUEUETIME
o | Total jobs: 1 Active Jobs: 0 Waiting Jobs: 1 Dep/Unsched Jobs: ()
§ Cancel Job]
g]
% 5
[BOT 4

5/27/2009 www.cac.cornell.edu 36

Cornell University

Center for Advanced Computing

(=]Blx]

Job startlnq connecting to all remote processes

Allinea Distributed Debugging Tool v2.3.1

Sessmn Control Search View Help

R EYI 0 dITH
HCurrent Group:[- |Focus on current: @ Group O Process O Thread | _| Step Threads Together
i Local Variables B
Locals | CurrentLineis) | Stack

Project Navigator
|Variab|e Mame I\r’alue |

Project Files |

@ Project Files

#8 Source Tree
=& Header Files
+& Source Files

Connecting to your program

Processes connected: 32/32 i“l"“"“l

Processes reacy: 31/32 i“l"“"“l
=1 Stdout |Stderr | Stdin ("All" group) | Breakpoints | Watches | Stacks |
Currently Displaying: | All hd|
[T

5/27/2009 www.cac.cornell.edu

37

Cornell University
Center for Advanced Computing

Session Confrol Search Yiew Help
P E&; T BEELETEIEE

~ Focus on current. ® Group) Process) Thread Step Threads Together

Current Group: Root

1 23 A0S N 7HE o101 zfi1apfi14

617 | 16 [19 20 || 21 | 22 || 23 | 24 |] 25 [| 26 [27 || 28 | 29 || 30 [] 31

Lell7 el

debug_codelf x
Fortran hModules

Prcject Files : :
integer mpierr

integer mpistat(mpi_status_size)

B3 Project Files

+-85o0urce Tree
+ & Header Files
+ 8 Source Files

integer i, tmppe.mype.n.npes
integer nmax

paraneter [NMAX=1048577)

real ACNMAID , bINMAKD

Root process
IS selected

< Initialize MPT
call mpi_initimpierr)
call mpi_camm_rank(mpi_comm_warld, mype, mpierr)
call mpi_comm_size(mpi_comm_world, npes, mpierrd

& ¢ Initialize data
k] i - 0) then

Locals = CurrentLine(s) | Stack

“Variable Name]\/a\ue [
] 0

[—

| ocal

Source

il ifimype .eq. 00 then
32 write(6,*) 'npes: ',npes,’ mype:' mype

.
locations of LT
34 yrite(6,*) ' YU mype: ' mype

endif

©llfoy

variables

) (] || Type: none selected

(=] stdout | Stderr | Stdin ("Root" group) | Breakpoints | Watches | Stacks

] Expression | Value

processes

Currently Displaying: | All -

STDOUT

Watched Values, Expressions

CoT

5/27/2009

www.cac.cornell.edu 38

5o/ Cornell University
EE) Center for Advanced Computing

DDT

e At this point, DDT should be up and running for you and you only
need to load the DDT module and any configuration changes you
made (ie Account name) will be saved for the next time you use it.

» It should feel very much like an IDE debugger, just with the added
capabilities of viewing remote processes and MPI information.

e It wasn’t shown, but this can be used just as well to debug OpenMP
programs, though you may need to be careful when stepping
through non-threaded sections. Check out the User Guide for any
guestions you have or request help through the TeraGrid help desk.

e UserGuide: http://www.allinea.com/downloads/userquide.pdf
Or press F1 while running DDT to call up the help.

5/27/2009 www.cac.cornell.edu 39

so/v Cornell University
(&)

Center for Advanced Computing

DDT Lab

« The DDT Lab is a free-form opportunity to get DDT running.

 Open an SSH session with an X-tunnel to ranger.tacc.utexas.edu
and get the example code:
login3$ cp ~train00/ddt_debug/debug_code.f .
« Compile
login3% mpif90 —g —O0 debug_code.f —o ddt_app
 Load the DDT Module and run ddt
login3% module load ddt
login3% ddt ddt_app

5/27/2009 www.cac.cornell.edu 40

