
Data Formats and Databases

Steve Lantz
Senior Research Associate

Cornell CAC

Workshop: Data Analysis on Ranger, December 8, 2010

How will you store your data?

• Raw binary is compact but not portable
– “Unformatted,” machine-specific representation
– Byte-order issues: big endian (IBM) vs. little endian (Intel)

• Formatted text is portable but not compact
– Need to know all the details of formatting just to read the data
– 1 byte of ASCII text stores only a single decimal digit (~3 bits)
– Most of the fat can be knocked out by compression (gzip, bzip, etc.)
– However, compression is impractical and slow for large files

• Need to consider how data will ultimately be used
– Are you trying to ensure future portability?
– Will your favored analysis tools be able to read the data?
– What storage constraints are there?

12/8/2010 www.cac.cornell.edu 2

Issues beyond the scope of this talk…

• Provenance
– The record of the origin or source of data
– The history of the ownership or location of data
– Purpose: to confirm the time and place of, and perhaps the person

responsible for, the creation, production or discovery of the data
• Curation

– Collecting, cataloging, organizing, and preserving data
• Ontology

– Assigning types and properties to data objects
– Determining relationships among data objects
– Associating concepts and meanings with data (semantics)

• Portable data formats can and do address some of these issues…

12/8/2010 www.cac.cornell.edu 3

Portable data formats: the HDF5 technology suite

• Versatile data model that can represent very complex data objects
and a wide variety of metadata

• Completely portable file format with no limit on the number or size of
data objects in the collection

• Free and open software library that runs on a range of platforms,
from laptops to massively parallel systems, and implements a high-
level API with C, C++, Fortran 90, and Java interfaces

• Rich set of integrated performance features that allow for
optimizations of access time and storage space

• Tools and applications for managing, manipulating, viewing, and
analyzing the data in the collection

Source: www.hdfgroup.org/hdf5

12/8/2010 www.cac.cornell.edu 4

Features lending flexibility to HDF5

• Datatype definitions include information such as byte order (endian)
and fully describe how the data is stored, insuring portability

• Virtual file layer provides extremely flexible storage and transfer
capabilities: Standard (Posix), Parallel, and Network I/O file drivers

• Compression and chunking are employed to improve access,
management, and storage efficiency

• External raw storage allows raw data to be shared among HDF5
files and/or applications

• Datatype transformation can be performed during I/O operations
• Complex subsetting reduces transferred data volume and improves

access speed during I/O operations
Source: www.hdfgroup.org/hdf5

12/8/2010 www.cac.cornell.edu 5

Portable data formats: netCDF

• NetCDF (network Common Data Form) is a set of software libraries
and machine-independent data formats that support the creation,
access, and sharing of array-oriented scientific data

• The free and open netCDF distribution contains the C/C++/F77/F90
libraries, plus the netCDF utilities ncgen and ncdump

• NetCDF for Java is also available (standalone)
• Many other interfaces to netCDF data exist: MATLAB, Objective-C,

Perl, Python, R, Ruby, Tcl/Tk
• There is a well-developed suite of software tools for manipulating or

displaying netCDF data
• Compatibility with HDF5 was introduced in netCDF-4

Source: http://www.unidata.ucar.edu/software/netcdf

12/8/2010 www.cac.cornell.edu 6

Properties of netCDF data

• Self-Describing. A netCDF file includes information about the data it
contains

• Portable. A netCDF file can be accessed by computers with
different ways of storing integers, characters, and floats

• Direct-access. A small subset of a large dataset may be accessed
without first reading through all the preceding data

• Appendable. Data may be appended to a properly structured
netCDF file without copying the dataset or redefining its structure

• Shareable. One writer and multiple readers may simultaneously
access the same netCDF file

• Archivable. NetCDF will always be backwards compatible
Source: http://www.unidata.ucar.edu/software/netcdf

12/8/2010 www.cac.cornell.edu 7

Advantages of netCDF

• NetCDF has been around longer, especially in the climate, weather,
atmosphere, and ocean research communities (source is UCAR)

• NetCDF has nice associated tools, especially for geo-gridded data
– Panoply (http://www.giss.nasa.gov/tools/panoply/) focuses on the

presentation of geo-gridded data. It is written in Java and is platform
independent. The feature set overlaps with ncBrowse and ncview.

– Ferret (http://ferret.wrc.noaa.gov/Ferret/) offers a Mathematica-like
approach to analysis. New variables and expressions may be defined
interactively; calculations may be applied over arbitrarily shaped
regions; geophysical formatting is built in.

– Parallel-NetCDF (http://trac.mcs.anl.gov/projects/parallel-netcdf/) is
built upon MPI-IO to distribute file reads and writes efficiently among
multiple processors.

12/8/2010 www.cac.cornell.edu 8

Portable data formats: Silo for visualization

• Silo is actually a library which implements an API for writing
scientific data to binary disk files

• It’s the primary file format for VisIt
• Silo upports point meshes, structured meshes, curves, etc.
• Internally, an I/O driver (typically HDF, but also PDB and netCDF)

actually reads and writes the files
• Fortran, C, and Python interfaces are provided with the library

– There is an independent Python interface called Pylo
(http://mathema.tician.de/software/pylo) which offers some
enhancements for easy use

• Silo builds easily on most POSIX systems

12/8/2010 www.cac.cornell.edu 9

Using Silo

• Silo is a serial I/O library but can be effectively used in what is called
“Poor Man’s Parallel I/O”
– Silo files may contain namespaces (directories) within a single file
– A “multi-block” object can be instantiated which spans multiple files
– Applications can then divide processors into groups in which each group

writes a separate file
– Each processor with a group writes to its own group (serially within the

group; parallel across groups)
– A single processor is then responsible for writing multi-block to tie the

various files together.
– Silo hides all of this from you with a set of functions to conceal the

operations

12/8/2010 www.cac.cornell.edu 10

Writing a
mesh file
in Silo

12/8/2010 www.cac.cornell.edu 11

Path from serial to parallel I/O – part 1

12/8/2010 www.cac.cornell.edu 12

P0 P1 P2 P3

I/O lib

File system

• P0 may become bottleneck
• System memory may be

exceeded on P0

Path from serial to parallel I/O – part 2

12/8/2010 www.cac.cornell.edu 13

P0 P1 P2 P3

I/O lib

File system

• Possible to achieve good
performance

• May require post-processing
• More work for applications,

programmers
I/O lib I/O lib I/O lib

Path from serial to parallel I/O – part 3

12/8/2010 www.cac.cornell.edu 14

P0 P1 P2 P3

Parallel I/O lib (based on MPI-IO)

Parallel file system

• Main point: either HDF5 or
netCDF can take the place of
the parallel I/O library -
they’ve already linked the
parallel I/O library for you

• Variant: only P1 and P2 act
as parallel writers; they gather
data from P0 and P3
respectively (chunking)

Accessing TACC files from Linux (or vice versa)

• SSHFS: the SSH File System
– The sshfs client lets you mount directories located on a remote server,

allowing you to work with files and directories as if they were local
– The remote machine only needs to be running a simple ssh/sftp server
– The client uses sftp to get files as you look at them
– Current implementation is a FUSE (Filesystem in USErspace) plugin

• XUFS : eXtended User-space File System
– It allows a user's $HOME directory on a personal Linux workstation to

“follow” them when remotely connecting to systems via ssh
– The software was developed by TACC staff; you must contact them

directly if you wish to download

12/8/2010 www.cac.cornell.edu 15

What’s a database?

• Everyone is familiar with the concept of a database, but variants
abound; it’s easy to be confused. Fundamentally, it’s…

• Enterprise-class relational databases:
– Oracle, MySQL, PostgreSQL, Microsoft SQL Server

• Small, light relational databases:
– SQLite, SmallSQL

• Special purpose databases:
– Apache Derby, Gadfly, Cayuga

• Object databases (layered on other databases)
• Data warehouses
• Federated databases
12/8/2010 www.cac.cornell.edu 16

A structured collection of data

Why use databases?

• They have built-in data integrity checks
– Management of row duplication
– Enforcement of data ranges and types

• They encourage forethought about the data to be stored
– What are the fields of the data?
– Can some values be NULL?

• They provide lots of features
– SQL connectors in most languages
– Advanced query capabilities
– Thread safety for transactional operations

• They may help your application scale up
– A naïve flat file search won’t scale

12/8/2010 www.cac.cornell.edu 17

Let’s represent some data

• Let’s say we want to write a Facebook application that allows people
to show their arXiv.org papers on their Facebook profile page
– True example! A CAC staff member was recently asked to do this

• The application needs to store information about papers in such a
way that it can extract papers based on queries about authors

• Conceptually we have a couple of objects we want to connect:
– Authors (Facebook ID, arXiv info, etc.)
– Papers (title, abstract, journal reference, etc.)

• Let’s look at some representations of this data

12/8/2010 www.cac.cornell.edu 18

Table-based flat file

• Add a row to the table for every unique paper an author has written
• Search the table for all rows that have the appropriate ID

• Problems:
– A row is duplicated for every author of a paper (e.g., Reading is neat)
– To match a given Facebook ID, a linear scan of the entire file is required

• Benefits:
– Easy to add new entries (depending on sorting)
– Simple to code the read/write functions

12/8/2010 www.cac.cornell.edu 19

Facebook ID Paper ID Paper Title Paper Authors
2341234 http://arxiv.org/abs/1234 Particle Pleasantry CH Foo, BC Lars
2341234 http://arxiv.org/abs/3234 Reading is neat CH Foo, RG Fields
1234123 http://arxiv.org/abs/4321 Science in Teaching DS Henry, RG Fields
1234123 http://arxiv.org/abs/3234 Reading is neat CH Foo, RG FIelds

Relational database

• Define two tables plus a link between them
• One table is Users/Authors; the other is Papers
• The link is between the two paperIDs

– paperID in Users is called a Foreign Key
because it points to a row in another table

– PaperID in Papers is called a Primary Key
because it uniquely identifies a row

• Benefits:
– Fast location of papers from author
– Easy to add fields, papers and authors

• Problems (eased by software):
– Database management

12/8/2010 www.cac.cornell.edu 20

More relationships

• We can create representations that are much more fined-grained
– Make the Users table (fewer rows, more fields) separate from Authored
– Provide a Recommended table to enable reviews
– Provide a Reading table that users can update

• Join Table – table that contains links to other tables (Foreign Keys)
and perhaps other information about the relationship.

12/8/2010 www.cac.cornell.edu 21

Relational data

• Relational databases are based on the relational model
• Practically this means that data can be expressed by a set of binary

relationships
– This is commonly seen in scientific data involving metadata that would

need to be replicated for every row of data
– The replication gets worse when the metadata is hierarchical.

12/8/2010 www.cac.cornell.edu 22

How do you decide?

• Flat files are useful for:
– Small amounts of data
– Static dumping of data

• Databases are useful for:
– Constantly updating/evolving data
– Data where searching/querying is important/complex
– Expressing relationships that are not captured in a row-based table
– Threading/transactions

• Other factors to consider:
– Size of data (cost/expertise)
– Expectations about sharing data

12/8/2010 www.cac.cornell.edu 23

Talking to a database

• Talking to a database requires a software connector that allows you
to speak SQL to the database.

• SQL – Structured Query Language
– SQL is a computer language designed for the creation, management,

modification and retrieval of data from a database
– Essentially all databases speak SQL, though many also provide some

form extensions (which are less standard).
– Using a database generally requires some basic knowledge of SQL

• PL/SQL and SQL/PSM
– These are database extensions that provide stored procedures in the

database, allowing some functionality to be moved into it
– This is the MOST abused part of database usage

12/8/2010 www.cac.cornell.edu 24

SQL language – select

• To introduce the language, we will go over some basic queries that
you would perform using our simplest table design

• First, retrieve the title of a specific paper:

• Retrieve an entire row:

• Retrieve a paper with a “Henry” author:

12/8/2010 www.cac.cornell.edu 25

SELECT * FROM Papers
WHERE PaperID = 200

SELECT Title FROM Papers
WHERE PaperID = 200

SELECT * FROM Papers
WHERE Authors LIKE ‘%Henry%’

SELECT article FROM Authored
WHERE Author = “UserID”

• Retrieve the list of articles authored
by a particular user:

• Now get the authored article ids:

• Now get the papers:

• Alternatively, use the JOIN keyword:

SELECT UserID FROM Users
WHERE FacebookID = “id123”

SQL language – join

12/8/2010 www.cac.cornell.edu 26

SELECT paperID,Title FROM Papers WHERE PaperID IN (‘1234’,’4321’)

Select paperID, title from Papers
INNER JOIN Authored.Article=Papers.PaperID
Where (Authored.Author = “UserID”)

SQL language – insert, update, commit

• SQL also allows inserting new rows into the database as well as
updating exisiting rows.

• Insert a new Paper for an existing Author

• Update the journal_ref

12/8/2010 www.cac.cornell.edu 27

INSERT INTO Papers (PaperID, Title, Authors)
Values(5678,’Really neat stuff’,’RG Fields’)

INSERT INTO Authored
Values(12345678,5678)

UPDATE Papers
SET Journal_ref=“someref”
WHERE PaperID=‘5678’

COMMIT

• Dropping rows from the table is just
like SELECTing, where rows are
selected using a WHERE clause.

• Functions can be used so that
records are retrieved in a way
meaningful to what you’re doing

SELECT PaperID,Authors FROM Papers
ORDER BY Published

SQL language – delete, order, etc.

12/8/2010 www.cac.cornell.edu 28

DELETE FROM Authored
WHERE Article=‘1234’

SELECT PaperID,Authors FROM Papers
WHERE Journal_ref LIKE ‘%Chimica%’
AND Published > somedate

Using SQL in application code

• All languages out there have SQL connectors which are software
modules that provide a connection to the database and a cursor

• Note: Many connectors have a special executeQuery function which
returns an iterable to retrieve rows (res->next())

12/8/2010 www.cac.cornell.edu 29

import MySQLdb
conn = MySQLdb.connect(host=“h”, user=“u”, passwd=“p321”, db=“test”)
cursor = conn.cursor()
cursor.execute(“SELECT * FROM Papers WHERE paperID = ‘1234’”)
row = cursor.fetchone()
cursor.execute (“SELECT * FROM Authored WHERE Author = ‘1234567’”)
row = cursor.fetchall()
cursor.close()
conn.close()

SQL language assessment

• Benefits:
– SQL is a relatively simple language, its learning curve is very gentle
– Connectors exist from every language to every type of database; all

reasonable databases support SQL; therefore SQL is a ubiqutious
choice

– Lines of code can be drastically reduced by taking advantage of
powerful SQL commands for searching and retrieving objects from the
database

• Problems:
– SQL queries can turn out to be amazingly inefficient even though it is

not obvious why they are inefficient; you may need to play around with a
query to optimize it

– It’s yet another language to learn

12/8/2010 www.cac.cornell.edu 30

Object-relational mapping

• OR mapping – When you just don’t have time for SQL
• Object-relational mapping (also ORM and O/R mapping) converts

data between a database and an object-oriented programming
language

• An ORM tool lets you create and use a database within a standard
OO programming paradigm
– Database tables are created from class definitions
– SQL queries are basically written for you by the tool, which can be

highly beneficial in most cases
• The ORM tools also allow you direct SQL access in cases where

optimized queries are needed

12/8/2010 www.cac.cornell.edu 31

OR mapping – create script

• A script is often used to
generate the database (so it
can be regenerated as needed)

• Generally it will look something
like the script on the left

12/8/2010 www.cac.cornell.edu 32

OR mapping – data structure

• For an OR Mapper, we specify the structure of the data using classes
and member variables.

• Things like null-ability, default values, and foreign keys are specified in
a simpler fashion.

12/8/2010 www.cac.cornell.edu 33

Specify the primary key
(otherwise one is generated)

This means varchar(128)

This field can be NULL

OR mapping – programming

• The notation for dealing with an OR-mapped version is relatively simple but
has several important features:
– Transactions/sessions are managed by the mapper
– Type checking is enforced by the language rather than at runtime in

SQL.
– Changing data tables means just changing a class structure.

12/8/2010 www.cac.cornell.edu 34

Summary – databases

• Databases can be an effective way to improve your ability to share
and manage your data.

• Databases and database technologies are increasingly embedded
in a variety of systems and the technology stacks to support easy
use of these systems are increasingly omnipresent.

• Database languages and tools can help reduce the amount of code
you manage in your projects.

12/8/2010 www.cac.cornell.edu 35

