WORKFLOWS AND DATA MANAGEMENT

(BITS, BYTES AND WHAT WE DO WITH THEM)

ADAM BRAZIER, SEPTEMBER 29TH 2014

Overview

Summary and scope

- Workflows
 - Automation, our friend and foe
 - How should we automate a workflow?
- Data management
 - From cradle to grave: the lifecycle of data
 - How should we make a plan?
- Scope
 - The (our) university research environment
 - Process, not specific software recommendations

• "Workflow" may mean different things to different people.

- "Workflow" may mean different things to different people. Avoiding dogma, we can consider "workflow" as:
 - A) What it says on the tin

- "Workflow" may mean different things to different people. Avoiding dogma, we can consider "workflow" as:
 - A) What it says on the tin
 - B) A process which can be illustrated with a flow diagram

- "Workflow" may mean different things to different people. Avoiding dogma, we can consider "workflow" as:
 - A) What it says on the tin
 - B) A process which can be illustrated with a flow diagram
 - C) "A series of tasks which produce an outcome" (Microsoft)

- "Workflow" may mean different things to different people. Avoiding dogma, we can consider "workflow" as:
 - A) What it says on the tin
 - B) A process which can be illustrated with a flow diagram
 - C) "A series of tasks that produce an outcome" (Microsoft)
 - D) "A workflow consists of an orchestrated and repeatable pattern of business activity enabled by the systematic organization of resources into processes that transform materials, provide services, or process information" (Wikipedia)

- "Workflow" may mean different things to different people. Avoiding dogma, we can consider "workflow" as:
 - A) What it says on the tin
 - B) A process which can be illustrated with a flow diagram
 - C) "A series of tasks that produce an outcome" (Microsoft)
 - D) "A workflow consists of an orchestrated and repeatable pattern of business activity enabled by the systematic organization of resources into processes that transform materials, provide services, or process information" (Wikipedia)

What do *our* workflows look like?

Workflows

What do *our* workflows look like?

Workflows Or some part thereof...

Workflows Follow the data!

Workflows Model the processes!

Workflows Why automate?

- Cheaper, in the long run
- Speed
- Reliability, Robustness
- Repeatability!

•Faster, better, stronger!

What *can* you lose if you automate?

- Hands-on involvement, the sense of what's going on
- Grad student training ground
- Development time
- Development cost

•Don't build HAL (or SKYNET!)

Workflows W

What do we need?

•Clear requirements.

•High-level, modular/looselycoupled design

Workflows Who should do it?

- This is a decision which depends on scale
- Domain researchers:
 - Intimate understanding of the activities
 - Embedded into the workflow already
 - Typically involved in writing the proposal
- Software professionals
 - Generally more current with available technologies
 - More practiced
 - Outsider's view
- Why not have both?

Workflows Managing the interface

- Software professionals and domain researchers both important
- Specification of the project's scope and requirements necessary
- Communication between the individuals and teams is what makes or breaks design and development
- Quality of personnel obviously a big driver of output

Workflows Case Study – PALFA

Workflows Case study – PALFA

Workflow very heterogeneous

- Large set of actors: undergrads, grad students, facility staff, postdocs, faculty, sysadmins, software developers
- Very large data set (for the time!)
- End-to-end duration ~ 1 month, plus reprocessings

Workflows

PALFA – 2 key successful elements

- Management of the interface between researchers and IT professionals
 - Requirements, regular communications, short development cycles
 - Resulted in product which matched needs, with cost control
- Loosely-coupled workflow elements with defined interfaces
 - Independent development by people with the expertise
 - Resulted in robust and adaptable design

Workflow

PALFA – 2 key areas for development

- Monitoring of workflow
 - Strengthens automation, improves debugging
 - Make report-production much easier

Documentation

- Easier to bring new researchers on board and survive people leaving
- Makes modification and enhancement of the workflow much easier

Workflows Some rules of thumb

- Put aside time for planning.
 - Separate requirements from design. Do requirements first! Evaluate what is *needed*
- Assign responsibilities to individuals and teams
- Ensure communications

Documentation and monitoring/QA should be defined deliverables

What is data management?

- One view (congruent with NSF guidance)
 - Description
 - Control
 - Policies
 - Storage/preservation
- Another way of looking at it:
 - Data management is the workflow, cradle to grave.
 - Your workflow will/should/can achieve NSF/other data management requirements

Oh, and... What is code, Alex?

- One view (congruent with NSF guidance)
 - Description
 - Control
 - Policies
 - Storage/preservation

•CODE IS DATA, TOO!

We need a plan! It's not just about proposal hoops

- Data Management Plans (DMPs) now required by many RFPs (including all NSF RFPs)
- Taking planning seriously makes sense:
 - It allows costing it into a budget
 - IT OFTEN IS THE WORKFLOW, END-TO-END
- A proposal DMP is a higher-level description, but further planning should take place before implementation begins

You are not alone!

- Research Data Management Service Group (RDMSG, http://data.research.cornell.edu/) provides DMP consulting and other services to Cornell researchers
- For those planning to use CAC services, we will provide help writing Data Management Plans and cyberinfrastructure sections of Proposals
- Many people are addressing similar questions, both inside and outside Cornell.

Description

- Enumerate your data products!
 - Include code, documentations, visualizations, online content
 - Metadata is also data!
- Decide on formats, including considerations of:
 - Format longevity
 - Access to the content elements
 - Ease of use, including by others

Control

- Control includes things we do to our data.
 - I/O
 - Transport
 - Pipelining/processing
 - Versioning
 - Tracking
 - Quality Assurance
 - Sharing and security
- Many functional requirements arise here

Policies

- Policies constrain and guide control, generating nonfunctional requirements/design constraints
- Key policy issues include:
 - Who can have our data?
 - When can they have our data?
 - Under what conditions can they have our data?
 - Licensing and attribution requirements
 - For how long must we keep our data?

Storage/preservation

- Storage:
 - Persisting the data during the project's duration
- Preservation:
 - Persisting the data after the project is completed
- There can be some hard decisions!
 - Cost broadly scales with volume
 - On-campus: CAC's Archival Storage facility, eCommons, CIT's EZ-Backup and department facilities – each serves different needs
 - For code, documents, audio-visual material, lowervolume data and data products, free solutions exist

What to keep, long-term?

- Material which supports publications should have the highest importance
- Take advantage of free resources:
 - eCommons (a Cornell service)
 - Github, sourceforge, etc
 - Youtube
 - Journal supplementary data resources
 - Department resources
 - Keep your eyes open!

Conclusion And, in summary

• Workflows and Data Management are inextricably linked

• Planning is key!

• It takes a team to build a solution; provision the expertise before you start

