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In HPC, the Compiler Can’t Do Everything 



What Matters Most in Per-Core Performance? 

 
 
Good memory locality!  

• Code should access contiguous, stride-one memory addresses 

– Memory IO (bandwidth and latency) is limiting 

– data always arrive in cache lines which include neighbors 

– loops are vectorizable via SSE, AVX 

– Align data on important boundaries; items won’t straddle boundaries, so 

access is more efficient 

 

• Code should emphasizes cache reuse 

– when multiple operations on a data item are grouped together, the item 

remains in cache, where access is much faster than from RAM 

 

• Locality is even more important for coprocessors than it is for CPUs 
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Important Aspects of Computer Architecture 
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Processor 
• CPU core – a processing 

unit that supports a 

thread of execution. 

• Processor – all the cores 

and cache memory on a 

single chip. 

• Cache – very fast on-chip 

memory (L1, L2, L3). 

• Cache line – basic unit of 

contiguous memory 

fetched from main 

memory into cache. 



Understanding The Memory Hierarchy 
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Functional Units 

L1 Cache 

Registers 

Local Memory 

L2 Cache 

L2 Cache   2 MB 

L1 Cache 512 KB 

Relative Memory Size (per socket) 

L3 Cache (Shared) 

~15.5 GB/s                3 ns 

~16 GB/s                   1.2 ns 

Memory Read Bandwidths (Left) 

Memory Access Latency (Right) 

 

~15 GB/s                   6.5 ns 

~10 GB/s                 24 ns 

Processor Core 
L3 Cache   20 MB 

Memory     16 GB 

Processor 



Computer Architecture Matters 

• Compiled code should exploit special instructions & hardware 

 
 

• Intel SSE and AVX extensions access special registers & operations 

– 128-bit SSE registers can hold 4 floats/ints or 2 doubles simultaneously 

– 256-bit AVX registers were introduced with “Sandy Bridge” 

– 512-bit SIMD registers are present on the Intel MICs 

– Within these vector registers, vector operations can be applied 

– Operations are also pipelined (e.g., load > multiply > add > store) 

– Therefore, multiple results can be produced every clock cycle 
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Understanding SIMD and Micro-Parallelism 

• For “vectorizable” loops with independent iterations, SSE and AVX 

instructions can be employed… 
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SIMD = Single Instruction, Multiple 

Data 
 

SSE = Streaming SIMD Extensions 
 

AVX = Advanced Vector Extensions 
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Performance Libraries 

• Optimized for specific architectures (chip + platform + system) 

– Take into account details of the memory hierarchy (e.g., cache sizes) 

– Exploit pertinent vector (SIMD) instructions 

 

• Offered by different vendors for their hardware products 

– Intel Math Kernel Library (MKL) 

– AMD Core Math Library (ACML) 

– IBM ESSL/PESSL, Cray libsci, ... 

 

• Usually far superior to hand-coded routines for “hot spots”  

– Writing your own library routines by hand is like re-inventing the wheel 

– Numerical Recipes books are NOT a source of optimized code: 

performance libraries can run 100x faster 
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HPC Software on Stampede, from Apps to Libs 
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TAU 

PAPI 

… 

AMBER 

NAMD 

GROMACS  

 

GAMESS 

VASP 

… 

MKL 

Open BLAS 

 

FFTW(2/3) 

 

GSL 

GLPK 

 

NumPy 

… 

PETSc 

 

ARPACK 

Hypre 

ScaLAPACK 

SLEPc 

 

METIS 

ParMETIS 

 

SPRNG 

… 

 

HDF5 

PHDF5 

 

NetCDF 

pNetCDF 

 

Parallel I/O 

 

GridFTP 

… 

Applications Parallel Libs Math Libs Input/Output Diagnostics 



Intel MKL 13 (Math Kernel Library) 

• Accompanies the Intel 13 compilers 

• Optimized by Intel for all current Intel architectures 

• Supports Fortran, C, C++ interfaces 

• Includes functions in the following areas: 

– Basic Linear Algebra Subroutines, for BLAS levels 1-3  

– LAPACK, for linear solvers and eigensystems analysis 

– Fast Fourier Transform (FFT) routines 

– Transcendental functions 

– Vector Math Library (VML) for vectorized transcendentals 

• Incorporates shared- and distributed-memory parallelism 

– OpenMP multithreading is built in, just set OMP_NUM_THREADS > 1 

– Link with BLACS to provide optimized ScaLAPACK 
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Using Intel MKL on Stampede 

• On login, MKL and its environment variables are loaded by default 

– They come with the Intel compiler 

– If you switch to a different compiler, you must re-load MKL explicitly 

(Not Recommended) 

module swap intel gcc 

module load mkl 

module help mkl 
 

• Compile and link for C/C++ or Fortran: dynamic linking-no Threads 
icc   myprog.c   -mkl=sequential 

ifort myprog.f90 -mkl=sequential 
  

• Compile and link for C/C++ or Fortran: dynamic linking-threads 
icc   myprog.c   -mkl=parallel 

ifort myprog.f90 -mkl=parallel 
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FFTW and ATLAS 

• These two free libraries rely on “cache-oblivious algorithms” 

– Resulting lib is self-adapted to the hardware cache size, etc. 

 

• FFTW, the Fastest Fourier Transform in the West 

– Cooley-Tukey with automatic performance adaptation 

– Prime Factor algorithm, best with small primes like (2, 3, 5, and 7) 

– The FFTW interface can also be linked against MKL 

 

• ATLAS, the Automatically Tuned Linear Algebra Software  

– BLAS plus some LAPACK 

– Not pre-built for Stampede (would need to be complied from source) 

– Best to use MKL on Stampede where possible. 
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GSL, the GNU Scientific Library 

• Complex Numbers  

• Roots of Polynomials  

• Special Functions  

• Vectors and Matrices  

• Permutations 

• Sorting  

• BLAS Support 

• Linear Algebra  

• Eigensystems 

• Fast Fourier Transforms  

• Quadrature 

• Random Numbers  

• Quasi-Random Sequences 

• Random Distributions  

• Statistics 

• Histograms  

• N-Tuples 
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• Monte Carlo Integration  

• Simulated Annealing 

• Differential Equations  

• Interpolation 

• Numerical Differentiation  

• Chebyshev Approximation 

• Series Acceleration  

• Discrete Hankel Transforms 

• Root-Finding  

• Minimization 

• Least-Squares Fitting  

• Physical Constants 

• IEEE Floating-Point  

• Discrete Wavelet Transforms 

• Basis splines 



Putting Performance into Development: Compilers 
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Compiler Options 
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• There are three important categories: 

 

– Optimization level 

 

– Architecture-related options affecting performance 

 

– Interprocedural optimization 

 

 

• Generally you will want to supply at least one option from each category 



Let the Compiler Do the Optimization 

• Compilers can do sophisticated optimization 

– Realize that the compiler will follow your lead 

– Structure the code so it’s easy for the compiler to do the right thing (and 

for other humans to understand it) 

– Favor simpler language constructs (pointers and OO code won’t help in 

hot spots) 

• Array of structs vs. structs of arrays 

• Use the latest compiler and optimization options 

– Check available compiler options 

 <compiler_command> --help 
 

– The Stampede User Guide (https://portal.xsede.org/web/xup/tacc-

stampede) lists compiler options affecting performance in Table 5.6 

– Experiment with combinations of options 
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Basic Optimization Level:  -On 

• -O0 = no optimization: disable all optimization for fast compilation 

• -O1 = compact optimization: optimize for speed, but disable      

   optimizations which increase code size 

• -O2 = default optimization 

• -O3 = aggressive optimization: rearrange code more freely, e.g., 

   perform scalar replacements, loop transformations, etc. 

 

• Specifying -O3 is not always worth it… 

– Can make compilation more time and memory intensive 

– Might be only marginally effective 

– Carries a risk of changing code semantics and results 

– Sometimes even breaks codes! 
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-O2 vs. -O3 

• Operations performed at default optimization level, -O2 

– Instruction rescheduling 

– Copy propagation 

– Software pipelining 

– Common sub-expression elimination 

– Prefetching 

– Some loop transformations 

 

• Operations performed at the higher optimization level -O3 

– Aggressive prefetching 

– More loop transformations 
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Architecture: the Compiler Should Know the Chip 

• SSE level and other capabilities depend on the exact chip 

 

• Taking an Intel “Sandy Bridge” from Stampede as an example… 

– Supports SSE, SSE2, SSE4_1, SSE4_2, AVX 

– Supports Intel’s SSSE3 = Supplemental SSE3, not the same as AMD’s 

– Does not support AMD’s SSE5 

 

• In Linux, a standard file shows features of your system’s architecture 

– Do this:   cat /proc/cpuinfo    {shows cpu information} 

– If you want to see even more, do a Web search on the model number 

 

• This information can be used during compilation… 
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Compiler Options Affecting Performance 

With Intel 13 compilers on Stampede: 

• -xhost enables the highest level of vectorization supported on the processor on which 

you compile 

 

• -opt-prefetch enables data prefetching 

 

• -fast sounds pretty good, but it is not recommended 

– prevents linking with shared libraries as it implies –static 

– also implies -no-prec-div, decreasing floating point precision 

 

• To optimize I/O on Stampede: -assume buffered_io (Fortran only) 

 

• To optimize floating-point math: -fp=model fast[=1|2] 

1/14/2015 www.cac.cornell.edu 21 



Interprocedural Optimization (IP) 

• The Intel compilers, like most, can do IP (option -ip) 

– Limits optimizations to within individual files 

– Produces line numbers for debugging 

 

• The Intel -ipo compiler option does more 

– Enables multi-file IP optimizations (between files) 

– Places additional information in each object file; rearranges object code 

– IP among ALL objects is performed during the load phase,  

– Can take much more time, as code is recompiled during linking 

– It is important to include options in link command (-ipo -O3 -xhost, etc.) 

– Easiest way to ensure correct linking is to link using mpif90 or mpicc 

– All this works because the special Intel xild loader replaces ld 

– When archiving in a library, you must use xiar, instead of ar 
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Other Intel Compiler Options 
• -g             generate debugging information, symbol table 

• -vec_report#   {# = 0-5} turn on vector diagnostic reporting –  

 make sure your innermost loops are vectorized 

• -check=… enable extensive runtime error checking 

      -check-pointers-*=… Should be removed for production HPC apps. 

• -openmp  multithread based on OpenMP directives 

• -openmp_report# {# = 0-2} turn on OpenMP diagnostic reporting 

 

• Do NOT USE: 

– -static load libs statically at runtime  

– -fast includes -static and -no-prec-div 
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Best Practices for Compilers 

• Recommended compiling for Stampede 

– Intel 13: 

 icc/ifort -O3 -xhost -ipo prog.c/cc/f90 

– GNU 4.4 (GCC not recommended or supported): 

 gcc -O3 -march=corei7-avx -mtune=corei7-avx -fwhole-program -combine prog.c 

– GNU (if absolutely necessary) mixed with icc-compiled subprograms: 

 mpicc -O3 -xhost -cc=gcc -L$ICC_LIB -lirc prog.c subprog_icc.o 

 

• -O2 is the default; compile with a different -Ox if this breaks (very rare) 

 

• Debug options should not be used in a production compilation  

– Compile like this only for debugging: ifort -O2 -g –check=… test.c 
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Lab: Compiler-Optimized Naïve Code vs. Libraries 

• Challenge: how fast can we do a linear solve via LU decomposition? 

• Naïve code is copied from Numerical Recipes and two alternative codes 

are based on calls to GSL and LAPACK 

– LAPACK references can be resolved by linking to an optimized library like ATLAS or MKL  

• Compare the timings of these codes when compiled with different 

compilers and optimizations 

– Do ‘module load gsl’ 

– Compile the codes with different flags, including “-g”, “-O2”, “-O3” (in Makefile) 

– Submit a job to see how fast the codes run (see results.txt) 

– Recompile with new flags and try again 

– Can even try to use MKL’s built-in OpenMP multithreading 

 

• Source is in ~tg459572/LABS/ludecomp.tgz 
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Putting Performance into Development: Tuning 
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In-Depth vs. Rough Tuning 

In-depth tuning is a long, iterative process: 

• Profile code 

• Work on most time intensive blocks 

• Repeat as long as you can tolerate… 

 

For rough tuning during development: 

• Learn about common microarchitectural 

features (like SSE) 

• Get a sense of how the compiler tries to 

optimize instructions, given certain 

features 
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First Rule of Thumb: Minimize Your Stride 

• Minimize stride length 

– It increases cache efficiency 

– It sets up hardware and software prefetching 

– Stride lengths of large powers of two are typically the worst case, 

leading to cache and translation look-aside buffer (TLB) misses due to 

limited cache associativity 

 

•  Strive for stride-1 vectorizable loops 

– Can be sent to a SIMD unit 

– Can be unrolled and pipelined 

– Can be processed by SSE and AVX instructions 

– Can be parallelized through OpenMP directives 

1/14/2015 www.cac.cornell.edu 28 



The Penalty of Stride > 1 

• For large and small 

arrays, always try to 

arrange data so that 

structures are arrays 

with a unit (1) stride. 
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Bandwidth Performance Code: 

 

do i = 1,10000000,istride 

sum = sum + data( i ) 

end do 

Performance of Strided Access
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Stride 1 in Fortran and C 

• The following snippets of code illustrate the correct way to access 

contiguous elements of a matrix, i.e., stride 1 in Fortran and C  
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Fortran Example: 

 

real*8 :: a(m,n), b(m,n), c(m,n)  

...  

do i=1,n  

   do j=1,m  

      a(j,i) = b(j,i) + c(j,i)  

   end do  

end do  

C Example: 

 

double a[m][n], b[m][n], c[m][n];  

...  

for (i=0; i < m; i++) 

{  

   for (j=0; j < n; j++) 

     a[i][j] = b[i][j] + c[i][j];   

} 

Column Major Row Major 



 

 

 

 

In L1 cache! 

Loop Tiling to Fit Into Cache 
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Example: matrix-matrix 

multiplication  

real*8 a(n,n), b(n,n), c(n,n) 

do ii=1,n,nb  ! Stride by block size 

  do jj=1,n,nb     

    do kk=1,n,nb       

      do i=ii,min(n,ii+nb-1) 

        do j=jj,min(n,jj+nb-1) 

          do k=kk,min(n,kk+nb-1) 

      c(i,j)=c(i,j)+a(i,k)*b(k,j) 

Takeaway: all the performance libraries do this, so you don’t have to 



Second Rule of Thumb: Inline Your Functions 

• What does inlining achieve? 

– It replaces a function call with a full copy of that function’s instructions 

– It avoids putting variables on the stack, jumping, etc. 

 

• When is inlining important? 

– When the function is a hot spot 

– When function call overhead is comparable to time spent in the routine 

– When it can benefit from Inter-Procedural Optimization 

 

• As you develop “think inlining” 

– The C “inline” keyword provides inlining within source 

– Use -ip or -ipo to allow the compiler to inline 
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integer :: ndim=2, niter=10000000 

real*8  :: x(ndim), x0(ndim), r 

integer :: i, j 

   ... 

   do i=1,niter 

      ... 

      r=dist(x,x0,ndim) 

      ... 

   end do 

   ... 

end program 

 

real*8 function dist(x,x0,n) 

real*8  :: x0(n), x(n), r 

integer :: j,n 

r=0.0 

do j=1,n 

   r=r+(x(j)-x0(j))**2 

end do 

dist=r 

end function 

integer:: ndim=2, niter=10000000 

real*8  :: x(ndim), x0(ndim), r 

integer :: i, j 

   ... 

   do i=1,niter 

      ... 

      r=0.0 

    do j=1,ndim 

         r=r+(x(j)-x0(j))**2 

      end do 

      ... 

   end do 

   ... 

end program 

Example: Procedure Inlining 
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Trivial function dist  called 

niter times 

function dist has been  

inlined inside the i loop 

Low-overhead loop j 

executes niter times 



Tips for Writing Faster Code 
• Write routines that can be inlined  

– Avoid calling complicated functions in hot spots. 

– Perhaps check that inlining has occurred in assembly output 

 

• Minimize the use of pointers  

 

• Avoid casts or type conversions, implicit or explicit 

– Conversions involve moving data between different execution units  

 

• Avoid I/O, function calls, branches, and divisions inside loops 

– Why pay overhead over and over? 

– Move loops into the subroutine, instead of looping the subroutine call 

– Structure loops to eliminate conditionals  

– Calculate a reciprocal outside the loop and multiply inside 
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Best Practices from the Stampede User Guide 

Additional performance can be obtained with these techniques: 

• Memory subsystem tuning 

– Blocking/tiling arrays 

– Prefetching (creating multiple streams of stride-1) 

 

• Floating-point tuning 

– Unrolling small inner loops to hide FP latencies and enable vectorization 

– Limiting use of Fortran 90+ array sections (can even compile slowly!) 

 

• I/O tuning 

– Consolidating all I/O to and from a few large files in $SCRATCH 

– Using direct-access binary files or MPI-IO 

– Avoiding I/O to many small files, especially in one directory 

– Avoiding frequent open-and-closes (can swamp the metadata server!) 
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Conclusions 

• Performance should be considered at every phase of application 

development 

– Large-scale parallel performance (speedup and scaling) is most 

influenced by choice of algorithm 

– Per-core performance is most influenced by the translation of the high-

level API and syntax into machine code (by libraries and compilers) 

 

• Coding style has implications for how well the code ultimately runs 

 

• Optimization that is done for server CPUs (e.g., Intel Sandy Bridge) 

also serves well for accelerators and coprocessors (e.g., Intel MIC) 

– Relative speed of inter-process communication is even slower on MIC 

– MKL is optimized for MIC, too, with automatic offload of MKL calls 

– It’s even more important for MIC code to vectorize well 
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