
Brandon Barker 

Computational Scientist 

Cornell University Center for Advanced 

Computing (CAC) brandon.barker@cornell.edu 

Code Optimization 

Workshop: High Performance Computing on Stampede 

January 15, 2015 

mailto:brandon.barker@cornell.edu


Putting Performance into Development: Libraries 

1/14/2015 www.cac.cornell.edu 2 

MODEL ALGORITHM 
IMPLEMEN- 

TATION 
COMPILATION 

RUNTIME 

ENVIRONMENT 

DATA LOCALITY, 

LIBRARIES 

COMPILER 

OPTIONS 

DIAGNOSTICS 

AND TUNING 

PARALLELISM, 

SCALABILITY 

…this talk is about the principles and 

practices during various stages of 

code development that lead to better 

performance on a per-core basis 

Starting with 

how to design 

for parallelism 

and scalability… 



1/14/2015 www.cac.cornell.edu 3 

In HPC, the Compiler Can’t Do Everything 



What Matters Most in Per-Core Performance? 

 
 
Good memory locality!  

• Code should access contiguous, stride-one memory addresses 

– Memory IO (bandwidth and latency) is limiting 

– data always arrive in cache lines which include neighbors 

– loops are vectorizable via SSE, AVX 

– Align data on important boundaries; items won’t straddle boundaries, so 

access is more efficient 

 

• Code should emphasizes cache reuse 

– when multiple operations on a data item are grouped together, the item 

remains in cache, where access is much faster than from RAM 

 

• Locality is even more important for coprocessors than it is for CPUs 

1/14/2015 www.cac.cornell.edu 4 



Important Aspects of Computer Architecture 

1/14/2015 www.cac.cornell.edu 5 

Core 1 Core 0 

Core 2 Core 3 

L2 

L1 

L3 

L2 

L1 

L1 L1 

L2 L2 

Processor 
• CPU core – a processing 

unit that supports a 

thread of execution. 

• Processor – all the cores 

and cache memory on a 

single chip. 

• Cache – very fast on-chip 

memory (L1, L2, L3). 

• Cache line – basic unit of 

contiguous memory 

fetched from main 

memory into cache. 



Understanding The Memory Hierarchy 

1/14/2015 

Functional Units 

L1 Cache 

Registers 

Local Memory 

L2 Cache 

L2 Cache   2 MB 

L1 Cache 512 KB 

Relative Memory Size (per socket) 

L3 Cache (Shared) 

~15.5 GB/s                3 ns 

~16 GB/s                   1.2 ns 

Memory Read Bandwidths (Left) 

Memory Access Latency (Right) 

 

~15 GB/s                   6.5 ns 

~10 GB/s                 24 ns 

Processor Core 
L3 Cache   20 MB 

Memory     16 GB 

Processor 



Computer Architecture Matters 

• Compiled code should exploit special instructions & hardware 

 
 

• Intel SSE and AVX extensions access special registers & operations 

– 128-bit SSE registers can hold 4 floats/ints or 2 doubles simultaneously 

– 256-bit AVX registers were introduced with “Sandy Bridge” 

– 512-bit SIMD registers are present on the Intel MICs 

– Within these vector registers, vector operations can be applied 

– Operations are also pipelined (e.g., load > multiply > add > store) 

– Therefore, multiple results can be produced every clock cycle 

 
 

1/14/2015 www.cac.cornell.edu 7 



Understanding SIMD and Micro-Parallelism 

• For “vectorizable” loops with independent iterations, SSE and AVX 

instructions can be employed… 

1/14/2015 www.cac.cornell.edu 8 

SIMD = Single Instruction, Multiple 

Data 
 

SSE = Streaming SIMD Extensions 
 

AVX = Advanced Vector Extensions 

 
 

Instructions operate on multiple 

arguments simultaneously, in a parallel 

Execution Unit  
D

a
ta

 P
o
o
l 

Instructions 

SIMD 

float 

float 

float 

float 

SSE register 



Performance Libraries 

• Optimized for specific architectures (chip + platform + system) 

– Take into account details of the memory hierarchy (e.g., cache sizes) 

– Exploit pertinent vector (SIMD) instructions 

 

• Offered by different vendors for their hardware products 

– Intel Math Kernel Library (MKL) 

– AMD Core Math Library (ACML) 

– IBM ESSL/PESSL, Cray libsci, ... 

 

• Usually far superior to hand-coded routines for “hot spots”  

– Writing your own library routines by hand is like re-inventing the wheel 

– Numerical Recipes books are NOT a source of optimized code: 

performance libraries can run 100x faster 

1/14/2015 www.cac.cornell.edu 9 



HPC Software on Stampede, from Apps to Libs 

1/14/2015 www.cac.cornell.edu 10 

TAU 

PAPI 

… 

AMBER 

NAMD 

GROMACS  

 

GAMESS 

VASP 

… 

MKL 

Open BLAS 

 

FFTW(2/3) 

 

GSL 

GLPK 

 

NumPy 

… 

PETSc 

 

ARPACK 

Hypre 

ScaLAPACK 

SLEPc 

 

METIS 

ParMETIS 

 

SPRNG 

… 

 

HDF5 

PHDF5 

 

NetCDF 

pNetCDF 

 

Parallel I/O 

 

GridFTP 

… 

Applications Parallel Libs Math Libs Input/Output Diagnostics 



Intel MKL 13 (Math Kernel Library) 

• Accompanies the Intel 13 compilers 

• Optimized by Intel for all current Intel architectures 

• Supports Fortran, C, C++ interfaces 

• Includes functions in the following areas: 

– Basic Linear Algebra Subroutines, for BLAS levels 1-3  

– LAPACK, for linear solvers and eigensystems analysis 

– Fast Fourier Transform (FFT) routines 

– Transcendental functions 

– Vector Math Library (VML) for vectorized transcendentals 

• Incorporates shared- and distributed-memory parallelism 

– OpenMP multithreading is built in, just set OMP_NUM_THREADS > 1 

– Link with BLACS to provide optimized ScaLAPACK 

1/14/2015 www.cac.cornell.edu 11 



Using Intel MKL on Stampede 

• On login, MKL and its environment variables are loaded by default 

– They come with the Intel compiler 

– If you switch to a different compiler, you must re-load MKL explicitly 

(Not Recommended) 

module swap intel gcc 

module load mkl 

module help mkl 
 

• Compile and link for C/C++ or Fortran: dynamic linking-no Threads 
icc   myprog.c   -mkl=sequential 

ifort myprog.f90 -mkl=sequential 
  

• Compile and link for C/C++ or Fortran: dynamic linking-threads 
icc   myprog.c   -mkl=parallel 

ifort myprog.f90 -mkl=parallel 

 
 

1/14/2015 www.cac.cornell.edu 12 



FFTW and ATLAS 

• These two free libraries rely on “cache-oblivious algorithms” 

– Resulting lib is self-adapted to the hardware cache size, etc. 

 

• FFTW, the Fastest Fourier Transform in the West 

– Cooley-Tukey with automatic performance adaptation 

– Prime Factor algorithm, best with small primes like (2, 3, 5, and 7) 

– The FFTW interface can also be linked against MKL 

 

• ATLAS, the Automatically Tuned Linear Algebra Software  

– BLAS plus some LAPACK 

– Not pre-built for Stampede (would need to be complied from source) 

– Best to use MKL on Stampede where possible. 

1/14/2015 www.cac.cornell.edu 13 



GSL, the GNU Scientific Library 

• Complex Numbers  

• Roots of Polynomials  

• Special Functions  

• Vectors and Matrices  

• Permutations 

• Sorting  

• BLAS Support 

• Linear Algebra  

• Eigensystems 

• Fast Fourier Transforms  

• Quadrature 

• Random Numbers  

• Quasi-Random Sequences 

• Random Distributions  

• Statistics 

• Histograms  

• N-Tuples 

1/14/2015 www.cac.cornell.edu 14 

• Monte Carlo Integration  

• Simulated Annealing 

• Differential Equations  

• Interpolation 

• Numerical Differentiation  

• Chebyshev Approximation 

• Series Acceleration  

• Discrete Hankel Transforms 

• Root-Finding  

• Minimization 

• Least-Squares Fitting  

• Physical Constants 

• IEEE Floating-Point  

• Discrete Wavelet Transforms 

• Basis splines 



Putting Performance into Development: Compilers 

1/14/2015 www.cac.cornell.edu 15 

MODEL ALGORITHM 
IMPLEMEN- 

TATION 
COMPILATION 

RUNTIME 

ENVIRONMENT 

DATA LOCALITY, 

LIBRARIES 

COMPILER 

OPTIONS 

DIAGNOSTICS 

AND TUNING 

PARALLELISM, 

SCALABILITY 

…this talk is about the principles and 

practices during various stages of 

code development that lead to better 

performance on a per-core basis 

Starting with 

how to design 

for parallelism 

and scalability… 



Compiler Options 

1/14/2015 www.cac.cornell.edu 16 

• There are three important categories: 

 

– Optimization level 

 

– Architecture-related options affecting performance 

 

– Interprocedural optimization 

 

 

• Generally you will want to supply at least one option from each category 



Let the Compiler Do the Optimization 

• Compilers can do sophisticated optimization 

– Realize that the compiler will follow your lead 

– Structure the code so it’s easy for the compiler to do the right thing (and 

for other humans to understand it) 

– Favor simpler language constructs (pointers and OO code won’t help in 

hot spots) 

• Array of structs vs. structs of arrays 

• Use the latest compiler and optimization options 

– Check available compiler options 

 <compiler_command> --help 
 

– The Stampede User Guide (https://portal.xsede.org/web/xup/tacc-

stampede) lists compiler options affecting performance in Table 5.6 

– Experiment with combinations of options 

1/14/2015 www.cac.cornell.edu 17 

https://portal.xsede.org/web/xup/tacc-stampede
https://portal.xsede.org/web/xup/tacc-stampede
https://portal.xsede.org/web/xup/tacc-stampede
https://portal.xsede.org/web/xup/tacc-stampede


Basic Optimization Level:  -On 

• -O0 = no optimization: disable all optimization for fast compilation 

• -O1 = compact optimization: optimize for speed, but disable      

   optimizations which increase code size 

• -O2 = default optimization 

• -O3 = aggressive optimization: rearrange code more freely, e.g., 

   perform scalar replacements, loop transformations, etc. 

 

• Specifying -O3 is not always worth it… 

– Can make compilation more time and memory intensive 

– Might be only marginally effective 

– Carries a risk of changing code semantics and results 

– Sometimes even breaks codes! 

1/14/2015 www.cac.cornell.edu 18 

   



-O2 vs. -O3 

• Operations performed at default optimization level, -O2 

– Instruction rescheduling 

– Copy propagation 

– Software pipelining 

– Common sub-expression elimination 

– Prefetching 

– Some loop transformations 

 

• Operations performed at the higher optimization level -O3 

– Aggressive prefetching 

– More loop transformations 

 

1/14/2015 www.cac.cornell.edu 19 



Architecture: the Compiler Should Know the Chip 

• SSE level and other capabilities depend on the exact chip 

 

• Taking an Intel “Sandy Bridge” from Stampede as an example… 

– Supports SSE, SSE2, SSE4_1, SSE4_2, AVX 

– Supports Intel’s SSSE3 = Supplemental SSE3, not the same as AMD’s 

– Does not support AMD’s SSE5 

 

• In Linux, a standard file shows features of your system’s architecture 

– Do this:   cat /proc/cpuinfo    {shows cpu information} 

– If you want to see even more, do a Web search on the model number 

 

• This information can be used during compilation… 

1/14/2015 www.cac.cornell.edu 20 



Compiler Options Affecting Performance 

With Intel 13 compilers on Stampede: 

• -xhost enables the highest level of vectorization supported on the processor on which 

you compile 

 

• -opt-prefetch enables data prefetching 

 

• -fast sounds pretty good, but it is not recommended 

– prevents linking with shared libraries as it implies –static 

– also implies -no-prec-div, decreasing floating point precision 

 

• To optimize I/O on Stampede: -assume buffered_io (Fortran only) 

 

• To optimize floating-point math: -fp=model fast[=1|2] 

1/14/2015 www.cac.cornell.edu 21 



Interprocedural Optimization (IP) 

• The Intel compilers, like most, can do IP (option -ip) 

– Limits optimizations to within individual files 

– Produces line numbers for debugging 

 

• The Intel -ipo compiler option does more 

– Enables multi-file IP optimizations (between files) 

– Places additional information in each object file; rearranges object code 

– IP among ALL objects is performed during the load phase,  

– Can take much more time, as code is recompiled during linking 

– It is important to include options in link command (-ipo -O3 -xhost, etc.) 

– Easiest way to ensure correct linking is to link using mpif90 or mpicc 

– All this works because the special Intel xild loader replaces ld 

– When archiving in a library, you must use xiar, instead of ar 

1/14/2015 www.cac.cornell.edu 22 



Other Intel Compiler Options 
• -g             generate debugging information, symbol table 

• -vec_report#   {# = 0-5} turn on vector diagnostic reporting –  

 make sure your innermost loops are vectorized 

• -check=… enable extensive runtime error checking 

      -check-pointers-*=… Should be removed for production HPC apps. 

• -openmp  multithread based on OpenMP directives 

• -openmp_report# {# = 0-2} turn on OpenMP diagnostic reporting 

 

• Do NOT USE: 

– -static load libs statically at runtime  

– -fast includes -static and -no-prec-div 

1/14/2015 www.cac.cornell.edu 23 



Best Practices for Compilers 

• Recommended compiling for Stampede 

– Intel 13: 

 icc/ifort -O3 -xhost -ipo prog.c/cc/f90 

– GNU 4.4 (GCC not recommended or supported): 

 gcc -O3 -march=corei7-avx -mtune=corei7-avx -fwhole-program -combine prog.c 

– GNU (if absolutely necessary) mixed with icc-compiled subprograms: 

 mpicc -O3 -xhost -cc=gcc -L$ICC_LIB -lirc prog.c subprog_icc.o 

 

• -O2 is the default; compile with a different -Ox if this breaks (very rare) 

 

• Debug options should not be used in a production compilation  

– Compile like this only for debugging: ifort -O2 -g –check=… test.c 

1/14/2015 www.cac.cornell.edu 24 



Lab: Compiler-Optimized Naïve Code vs. Libraries 

• Challenge: how fast can we do a linear solve via LU decomposition? 

• Naïve code is copied from Numerical Recipes and two alternative codes 

are based on calls to GSL and LAPACK 

– LAPACK references can be resolved by linking to an optimized library like ATLAS or MKL  

• Compare the timings of these codes when compiled with different 

compilers and optimizations 

– Do ‘module load gsl’ 

– Compile the codes with different flags, including “-g”, “-O2”, “-O3” (in Makefile) 

– Submit a job to see how fast the codes run (see results.txt) 

– Recompile with new flags and try again 

– Can even try to use MKL’s built-in OpenMP multithreading 

 

• Source is in ~tg459572/LABS/ludecomp.tgz 

1/14/2015 www.cac.cornell.edu 25 



Putting Performance into Development: Tuning 

1/14/2015 www.cac.cornell.edu 26 

MODEL ALGORITHM 
IMPLEMEN- 

TATION 
COMPILATION 

RUNTIME 

ENVIRONMENT 

DATA LOCALITY, 

LIBRARIES 

COMPILER 

OPTIONS 

DIAGNOSTICS 

AND TUNING 

PARALLELISM, 

SCALABILITY 

…this talk is about the principles and 

practices during various stages of 

code development that lead to better 

performance on a per-core basis 

Starting with 

how to design 

for parallelism 

and scalability… 



In-Depth vs. Rough Tuning 

In-depth tuning is a long, iterative process: 

• Profile code 

• Work on most time intensive blocks 

• Repeat as long as you can tolerate… 

 

For rough tuning during development: 

• Learn about common microarchitectural 

features (like SSE) 

• Get a sense of how the compiler tries to 

optimize instructions, given certain 

features 

 

1/14/2015 www.cac.cornell.edu 27 

REVIEW 

PROFILE 

TUNE MOST 

TIME-INTENSIVE 

SECTION 

DECENT 

PERFORMANCE 

GAIN? YES NO 

MORE 

EFFORT ON 

THIS? 

STOP 

CHECK 

IMPROVEMENT 
RE- 

EVALUATE 

YES 

NO 



First Rule of Thumb: Minimize Your Stride 

• Minimize stride length 

– It increases cache efficiency 

– It sets up hardware and software prefetching 

– Stride lengths of large powers of two are typically the worst case, 

leading to cache and translation look-aside buffer (TLB) misses due to 

limited cache associativity 

 

•  Strive for stride-1 vectorizable loops 

– Can be sent to a SIMD unit 

– Can be unrolled and pipelined 

– Can be processed by SSE and AVX instructions 

– Can be parallelized through OpenMP directives 

1/14/2015 www.cac.cornell.edu 28 



The Penalty of Stride > 1 

• For large and small 

arrays, always try to 

arrange data so that 

structures are arrays 

with a unit (1) stride. 

1/14/2015 www.cac.cornell.edu 29 

Bandwidth Performance Code: 

 

do i = 1,10000000,istride 

sum = sum + data( i ) 

end do 

Performance of Strided Access

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

Stride

E
ff

e
c

ti
v

e
 B

a
n

d
w

id
th

 

(M
B

/s
)



Stride 1 in Fortran and C 

• The following snippets of code illustrate the correct way to access 

contiguous elements of a matrix, i.e., stride 1 in Fortran and C  

1/14/2015 www.cac.cornell.edu 30 

Fortran Example: 

 

real*8 :: a(m,n), b(m,n), c(m,n)  

...  

do i=1,n  

   do j=1,m  

      a(j,i) = b(j,i) + c(j,i)  

   end do  

end do  

C Example: 

 

double a[m][n], b[m][n], c[m][n];  

...  

for (i=0; i < m; i++) 

{  

   for (j=0; j < n; j++) 

     a[i][j] = b[i][j] + c[i][j];   

} 

Column Major Row Major 



 

 

 

 

In L1 cache! 

Loop Tiling to Fit Into Cache 

1/14/2015 www.cac.cornell.edu 31 

Example: matrix-matrix 

multiplication  

real*8 a(n,n), b(n,n), c(n,n) 

do ii=1,n,nb  ! Stride by block size 

  do jj=1,n,nb     

    do kk=1,n,nb       

      do i=ii,min(n,ii+nb-1) 

        do j=jj,min(n,jj+nb-1) 

          do k=kk,min(n,kk+nb-1) 

      c(i,j)=c(i,j)+a(i,k)*b(k,j) 

Takeaway: all the performance libraries do this, so you don’t have to 



Second Rule of Thumb: Inline Your Functions 

• What does inlining achieve? 

– It replaces a function call with a full copy of that function’s instructions 

– It avoids putting variables on the stack, jumping, etc. 

 

• When is inlining important? 

– When the function is a hot spot 

– When function call overhead is comparable to time spent in the routine 

– When it can benefit from Inter-Procedural Optimization 

 

• As you develop “think inlining” 

– The C “inline” keyword provides inlining within source 

– Use -ip or -ipo to allow the compiler to inline 

1/14/2015 www.cac.cornell.edu 32 



integer :: ndim=2, niter=10000000 

real*8  :: x(ndim), x0(ndim), r 

integer :: i, j 

   ... 

   do i=1,niter 

      ... 

      r=dist(x,x0,ndim) 

      ... 

   end do 

   ... 

end program 

 

real*8 function dist(x,x0,n) 

real*8  :: x0(n), x(n), r 

integer :: j,n 

r=0.0 

do j=1,n 

   r=r+(x(j)-x0(j))**2 

end do 

dist=r 

end function 

integer:: ndim=2, niter=10000000 

real*8  :: x(ndim), x0(ndim), r 

integer :: i, j 

   ... 

   do i=1,niter 

      ... 

      r=0.0 

    do j=1,ndim 

         r=r+(x(j)-x0(j))**2 

      end do 

      ... 

   end do 

   ... 

end program 

Example: Procedure Inlining 

1/14/2015 www.cac.cornell.edu 33 

Trivial function dist  called 

niter times 

function dist has been  

inlined inside the i loop 

Low-overhead loop j 

executes niter times 



Tips for Writing Faster Code 
• Write routines that can be inlined  

– Avoid calling complicated functions in hot spots. 

– Perhaps check that inlining has occurred in assembly output 

 

• Minimize the use of pointers  

 

• Avoid casts or type conversions, implicit or explicit 

– Conversions involve moving data between different execution units  

 

• Avoid I/O, function calls, branches, and divisions inside loops 

– Why pay overhead over and over? 

– Move loops into the subroutine, instead of looping the subroutine call 

– Structure loops to eliminate conditionals  

– Calculate a reciprocal outside the loop and multiply inside 

1/14/2015 www.cac.cornell.edu 34 



Best Practices from the Stampede User Guide 

Additional performance can be obtained with these techniques: 

• Memory subsystem tuning 

– Blocking/tiling arrays 

– Prefetching (creating multiple streams of stride-1) 

 

• Floating-point tuning 

– Unrolling small inner loops to hide FP latencies and enable vectorization 

– Limiting use of Fortran 90+ array sections (can even compile slowly!) 

 

• I/O tuning 

– Consolidating all I/O to and from a few large files in $SCRATCH 

– Using direct-access binary files or MPI-IO 

– Avoiding I/O to many small files, especially in one directory 

– Avoiding frequent open-and-closes (can swamp the metadata server!) 
1/14/2015 www.cac.cornell.edu 35 



Conclusions 

• Performance should be considered at every phase of application 

development 

– Large-scale parallel performance (speedup and scaling) is most 

influenced by choice of algorithm 

– Per-core performance is most influenced by the translation of the high-

level API and syntax into machine code (by libraries and compilers) 

 

• Coding style has implications for how well the code ultimately runs 

 

• Optimization that is done for server CPUs (e.g., Intel Sandy Bridge) 

also serves well for accelerators and coprocessors (e.g., Intel MIC) 

– Relative speed of inter-process communication is even slower on MIC 

– MKL is optimized for MIC, too, with automatic offload of MKL calls 

– It’s even more important for MIC code to vectorize well 

1/14/2015 www.cac.cornell.edu 36 



References 

• Code Optimization Virtual Workshop 

– https://www.cac.cornell.edu/VW/CodeOptimization 

• Stampede User Guide: 

– https://portal.tacc.utexas.edu/user-guides/stampede 

1/14/2015 www.cac.cornell.edu 37 

https://www.cac.cornell.edu/VW/CodeOptimization
https://www.cac.cornell.edu/VW/CodeOptimization
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede

