On-Demand Research Computing - Infrastructure as a Service -
Motivation

• **Research computing means many different things…**
 – Scientific workflows have different requirements at each step
 – Cloud is only part of the solution
 – Connecting to and from other CI resources is important

• **Nobody likes a bad surprise**
 – Transparency, no hidden costs
 – Need a way to bound financial risk

• **Economies of scale**
 – Sharing hardware and software where it makes sense
 – Pay for what you need, when you need it

• **Customized environments for various disciplines**
 – Collaboration tools
 – Data storage & analysis tools
 – Flexibility to support different computing models (e.g. Hadoop)
Red Cloud Provides:

Predictable, Reproducible, Reliable Performance
We publish hardware specifications (CPU, RAM, network) and do not oversubscribe.

Convenient
Need system up and running yesterday.
Need a big fast machine for only a few months, weeks or days.
Need a small server to run continuously.

No Hidden Costs
No cost for network traffic in or out of the cloud.

Fast Access to Your Data
Fast data transfers via 10Gb Ethernet in or out of the cloud at no additional charge.
Globus Online access

Economies of scale
IaaS: Infrastructure
SaaS: Software

Expert Help
System, application, and programming consulting are available.

Easy Budgeting with Subscriptions
No billing surprises!

IaaS is Amazon API Compatible
Migrate when your requirements outgrow Red Cloud.
Some Use Cases to Consider

• **Support for Scientific Workflows**
 – Pre & post-processing of data and results
 – Data analysis
 – Globus Online for fast reliable data transfer
 • https://www.globusonline.org/

• **Collaboration**
 – Wiki hosting
 – Customized data analysis & computational environments

• **Web Portals**
 – Science Gateways
 – Domain Specific Portals
 – Hub Zero
 • http://hubzero.org/pressroom
 • http://nanohub.org

• **Event Driven Science**
 – https://opensource.ncsa.illinois.edu/confluence/display/SGST/Semantic+Geostreaming+Toolkit

• **Education, Outreach & Training**
 – Pre-configured systems & software tools providing consistent training platform
 – Common laboratory computing environment

• **Bursting**
 – Additional software and hardware on demand
Infrastructure as a Service (IaaS)

red cloud provides on-demand:

• Virtual Servers

• Storage: Virtual disks for the virtual servers

Plus the necessary fast networking, power, space, and cooling to make everything work.

Configuration

• Total
 – 96 cores, 384GB of RAM in 8 servers:
• 8 Servers
 – 2, 2.7 GHz Xeon E5650 CPUs (2 x 6 cores)
 – 48GB of RAM (4GB/core)
 – Maximum virtual server size:
 • 12 cores, 48GB RAM
• 10 Gigabit Ethernet interconnect
• Storage
 – 7.5TB
 – Accessible by virtual servers via 10Gb iSCSI
• Software
 – Eucalyptus 2.0.3 (Open Source)
Subscription-based Recovery Model

Cornell University $500/core year*

Other Academic Institutions $750/core year

*A core year is equal to 8585 hours

Each subscription account includes 50GB of storage
<table>
<thead>
<tr>
<th>Storage</th>
<th>Consulting</th>
<th>Additional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornell Users</td>
<td>$59.90/hour</td>
<td>$0.91/GB/year</td>
</tr>
<tr>
<td>Other Academic</td>
<td>$85.47/hour</td>
<td>$1.45/GB/year</td>
</tr>
<tr>
<td>Institutions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About Cornell Center for Advanced Computing (CAC) Projects

- CAC operates on a cost-recovery model.
- Services are charged to the project’s CU account number.
- Published rates are subsidized by the Provost and revised annually.
- Fee-based services, e.g.:
 - Computing (consider pay as-you-go vs. lease)
 - Consulting
 - File storage
 - Cluster maintenance
 - Red Cloud (cloud computing subscription)
- No-cost services:
 - Exploratory accounts
 - General help
 - Documentation
 - Training workshops
 - Access to research networks
How to Set up a Project

http://www.cac.cornell.edu/services/

• PI: Complete the *Project Request Form*
 – project title and abstract
 – 7 digit CU account number
 – account point of contact: CU NetID

• Email is sent to the account rep (immediate)

• Account rep: Complete the *Full Project Account Information Form*
 – Check the 7 digit CU account number
 – Add Sub-account, Project, and Sub-object codes
 – Enter Account expiration date

• Email is sent to the PI (within 4 hours)
How to Manage a Project

http://www.cac.cornell.edu/services/

• PI and/or Proxy: Use the *Manage your Project Form*
 – Update description, account number, contact information
 – Add project members, specify a Proxy
 – Specify resource limits: computing, storage, consulting, cloud subscription

• Account rep: Use the *Update your Account Form*
 – Update account number, expiration date, contact information
 – Add project members, specify a Proxy
 – Specify resource limits: computing, storage, consulting, cloud subscription

• Monthly invoices are sent by email as PDFs

• Send questions to help@cac.cornell.edu
Infrastructure as a Service (IaaS) Cloud

Red Cloud provides on-demand:

- **Computing Cycles**: Virtual Servers in Cloud “Instances”
- **Storage**: Virtual Disks in Elastic Block Storage (“EBS”) Volumes
Red Cloud Documentation

- Have questions? E-mail help@cac.cornell.edu
Cloud Management Tools:

- euca2ools: Linux command line tool
- HybridFox: See Red Cloud user documentation for setup info
- Amazon EC2 API
First Time Logon

- Go to https://cloud.cac.cornell.edu:8443 in your web browser.
- Click on “Recover the Password” to set the initial password. This is **not** your CAC account password!
- After logging in, under the “Credentials” tab,
 - Click on the “Download Credentials” button to download X.509 credentials to use with euca2ools.
 - Click on the “Show Keys” button to obtain Amazon-style string-based keys (used by HybridFox)
Cloud Management Tool: euca2ools

- Linux command line tool

 - Download and install on your own Linux machine, or
 - If you have a CAC account, the tool is available on cloud-login.cac.cornell.edu. Log in using your CAC user credentials.
Set Up euca2ools

- Unpack the zip file containing X.509 user credentials downloaded from the “Credentials” tab:
  ```
  mkdir .euca
  cd .euca
  unzip euca2-<user name>-x509.zip
  ```
- If on a shared system, restrict permissions so the directory is readable to you.
  ```
  chmod 0700 ~/.euca
  chmod 0600 ~/.euca/*
  ```
- Setting up the environment. Do this before using euca2ools from a new login session.
  ```
  source .euca/eucarc
  ```
- Generate a keypair for logging into your instances:
  ```
  euca-add-keypair mykey | tee .euca/mykey.private
  chmod 0600 .euca/mykey.private
  ```
Start an Instance

- List available images for launching an instance:
 `euca-describe-images`
- Officially Supported Linux Distributions:
 - CentOS 5 (`emi-799C12DB & emi-17A11C17`)
 - CentOS 6 (`emi-296211C7`)
 - Ubuntu 10.04 (`emi-2EE41562`)
- Instance Types: we don’t oversubscribe CPU or RAM!

<table>
<thead>
<tr>
<th>Type</th>
<th>Cores</th>
<th>RAM</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.small</td>
<td>1</td>
<td>4 GB</td>
<td>20 GB</td>
</tr>
<tr>
<td>C1.medium</td>
<td>2</td>
<td>8 GB</td>
<td>40 GB</td>
</tr>
<tr>
<td>M1.large</td>
<td>4</td>
<td>16 GB</td>
<td>200 GB</td>
</tr>
<tr>
<td>M1.xlarge</td>
<td>8</td>
<td>32 GB</td>
<td>400 GB</td>
</tr>
<tr>
<td>C1.xlarge</td>
<td>12</td>
<td>48 GB</td>
<td>1000 GB</td>
</tr>
</tbody>
</table>
Start an Instance Cont’d

• Start an instance: starts usage meter
 euca-run-instances -k mykey -t m1.small emi-17A11C17
 euca-describe-instances

• Once the instance is running, ssh into the instances as root user.
 ssh -i euca-shl1-x509/mykey.private

Tips

• My instance failed to respond on the network. What happened? Use the “euca-get-console-output <instance ID>” command to take a peek at the console.

• Format and use the rest of the local disk (/dev/vda2):
 mkfs -t ext3 /dev/vda2
 mount /dev/vda2 /mnt

 Warning: contents of both root disk (/dev/vda1) and local disk (/dev/vda2) will be lost when the instance is terminated!
Reboot and Terminate Instance

• Reboot an instance
 euca-reboot-instances <instance ID>

• Terminate an instance: stops usage meter
 euca-terminate-instances <instance ID>
Elastic Block Storage (EBS)

- Each EBS volume is a virtual disk that can be attached to or detached from a cloud instance on demand. Inside the cloud instance, each attached EBS volume is a block device (e.g. /dev/vdb).
- User can create EBS volumes up to 1 TB in increments of 1 GB.
- EBS volumes connect to cloud instances via iSCSI for best performance (300+ MB/sec observed in testing).

- Allocate a volume: usage meter starts
 euca-create-volume -s <size in GB> -z caccloud

- List all volumes:
 euca-describe-volumes

- Attach a volume to an instance:
 euca-attach-volume -i <instance ID> -d <device name> <volume ID>
Elastic Block Storage (EBS) Continued

- Detach a volume from an instance:
 - Make sure the file system is unmounted to flush any cached data to disk.
 - `euca-detach-volume <volume ID>`
- Destroy a volume: stops usage meter
 `euca-delete-volume <volume ID>`

Known Bugs

- The “-d” option in the `euca-attach-volume` command is required but ignored. The attached volume will be named as `/dev/vdX` where X is the next available letter in the list of device names.
- Detach all attached volumes before rebooting an instance. Otherwise the attached volume will remain “attached” but inaccessible until the instance is terminated.
Create a Customized Image

Method 1: Make a Copy of the Root Disk of a Running Instance

On a running instance,

• Customize the installation to your liking.
• Install euca2ools.
• Create a bundle of the root disk:
 euca-bundle-vol -v / -e <excluded directories> -r x86_64
 --fstab /etc/fstab --kernel <eki> --ramdisk <eri> -d
 <working directory> --no-inherit
Create a Customized Image Cont’d

- Copy the bundle elsewhere for safe-keeping, or
- Upload the customized image:
 - Upload the bundle:
 euca-upload-bundle -b <bucket name> -m <manifest>
 - Register image:
 euca-register <bucket>/<xml>
Create a Customized Image Cont’d

Method 2: start from a basic OS image

- Get a Basic OS Image here:
 https://cloud.cac.cornell.edu/images
- Mount the image: (root access required)
 mount -o loop <disk image file> <mount point>
- Add new software like this:
 rpm -root <mount point> -ivh ...
 yum -installroot <mount point> install ...
- chroot <mount point> could be useful.
- Unmount image when done:
 umount <mount point>
- Bundle the image: make sure the working directory has sufficient space!
 euca-bundle-image -i <image file> -d <working directory> --kernel <eki> --ramdisk <eri>
- Upload the bundle as method 1
Known Bug:

• Currently all uploaded images are readable by everyone. Eucalyptus ignores the image’s “launchPermission” setting (See `euca-describe-image-attributes` and `euca-modify-image-attribute commands`). Either:
 • Do not include confidential information (e.g. setting root password in `/etc/shadow`) in your uploaded images, or
 • Take down your image using `euca-deregister` and `euca-delete-bundle commands` as soon as you launch the desired instances. Keep a copy of the bundle somewhere safe and re-upload as needed.
Unsupported Amazon EC2 Features

• Saving instance root disk to EBS and booting from EBS: Coming in Eucalyptus 3!

• Elastic IP addresses / virtual private clouds / security groups

• Placement groups: not needed. All instances concentrate to a single 10 Gbit switch. Good network connectivity everywhere!