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Abstract
An elastoviscoplastic finite element model of aluminum alloys is used to
compare mechanical response among meshes formed with several different
grain shapes. Tetrahedral elements are used to form grains of cubic, rhombic
dodecahedral and truncated octahedral shape. The influence of the grain
shape on the aggregate response is examined in terms of the stress variation
and the aggregate elastic moduli. While elastic anisotropy in the bulk
material is not found to be dependent on grain shape, consistent trends are
observed in intragranular and intergranular stress distributions across these
mesh definitions.

1. Introduction

Polycrystalline metals constitute an important class of engineering materials, and accurately
predicting their response to mechanical manipulation and loading allows increased efficiency in
their forming and utilization. Modelling on the polycrystal, or aggregate, level gives insight into
material behaviors such as orientational texture evolution and formation of residual stresses.
Here, an aggregate is a group of crystals that act collectively to define the bulk behavior. Of
particular interest is how the properties of the constituent crystals are expressed in the behavior
of the bulk. Confidence in a model enables the determination of aggregate properties from
crystal properties or vice versa. A major issue in this regard is whether a model accurately
captures the grain (crystal) interactions, including their dependencies on the grain morphology
and topology, as these interactions are the physical link between crystals acting individually
and aggregates of crystals acting collectively. ‘Grain interactions’ generally refers to the ways
in which neighboring grains affect each other’s stress development and reorientation during
the course of deformation of the bulk.

All models have target applications and assessing the fidelity of a model involves
determining its accuracy within that scope. The targeted behavior of the finite element
(FE) model considered here is the elastoplastic response of polycrystalline materials under
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mechanical loading at moderate strain rates. In assessing a model it is necessary to examine its
construct in several respects; governing equations, methodologies invoked to obtain solutions,
and robustness to variations of input data are the main components. For polycrystals, the
rendering of an aggregate is also important. Variables available for this task include the
number of degrees of freedom within each crystal, the morphology (shape) of the crystals and
the topology associated with their arrangement. These simple variables can have an impact on
bulk behavior. For example, Bunge et al [1] explored the effects of grain shape and packing
on the elastic properties of polycrystals, using grains of three different shapes to do so. They
found that the influence of these factors can be up to 25% of the total texture influence. The
influence of these geometric properties of the grains on the fidelity of the simulation results,
particularly the stresses within crystals, is the focus of the current paper.

For polycrystals, grain interactions occur via intergranular tractions. These intergranular
tractions are the local boundary conditions for grains and thus control the stress internal to the
grains. The stress observed at the macroscopic scale may be computed from averaging over
an external surface of an aggregate. To fully assess a model it is necessary to compare model
results with experimental results not only through this aggregate average but also through the
distribution of crystal stresses within the aggregate, assuming that a goal of the model is to
illuminate how crystals act collectively. Since the created domain can never be completely
naturalistic it is possible that some aspect of the virtual samples may introduce an aphysical
artefact. By insisting on assessment of the accuracy at the crystal level as well as for the
aggregate average to determine that any artefacts are at an acceptably small level (and lacking
a mathematical proof), it is necessary to have measurements of the response at the scale of
crystals as a basis for comparison.

Diffraction (x-ray or neutron) provides lattice spacing data. Using changes in the spacing
during in situ mechanical loading, individual components of the lattice (elastic) strain can be
determined. The crystal stress may be evaluated directly from the strain using Hooke’s law,
provided the strain tensor is completely determined and the single crystal properties are well
known. Lattice strains can be measured within a single grain via micro-diffraction or for sets
of crystals corresponding to a particular crystallographic fiber via bulk diffraction. From these
data, it is possible to quantify, for example, the elastic anisotropy via directional diffraction
elastic moduli, and the variability of strain, either between grains of different orientation (using
bulk diffraction) or within small sets of grains (using micro-diffraction). Since these behaviors
reflect the influences abutting crystals can have on each other, an accurate simulation with
physically sound accounting of grain interactions should be able to capture what is observed,
both qualitatively and quantitatively. These behaviors, therefore, give us a basis for critiquing
the model performance. In the past there has been incomplete success in predicting the degree
of elastic anisotropy that manifests during deformation [2, 3]. The FE simulations tend to
show less difference in lattice strains between crystals with different orientations relative to
the experiments. Part of that discrepancy can be attributed to physical changes in the single
crystal material properties upon alloying [4, 5], but that does not completely account for the
difference. Knowing the extent to which the grain and bulk instantiation (i.e. formation of the
FE representation of the physical specimen) itself influences the results may shed further light
on this discrepancy and is necessary before the simulations can be used with confidence either
to predict aggregate behaviors from that of single crystals or to infer single crystal properties
from aggregate averages.

In this paper we will begin by describing the modelling framework, both in terms of the
model equations and in terms of specimen instantiation. We will further discuss those aspects
of the diffraction experiments relevant to comparing simulation results with experimental
data, including a thorough description of how these particular simulations have been tied
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to experiments. We then present the simulation results, focussing on the diffraction moduli
and the spatial variability of stress as the methods of investigating the effects of different grain
discretizations. Finally, we conclude with the implications of these results on future modelling
endeavours.

2. Virtual polycrystals

The simulations used in this study are performed using a parallel computational implementation
of an elastoviscoplastic FE formulation. The large scale parallel nature of the simulations gives
us the ability to have many degrees of freedom within each crystal in the bulk material while
still following a volume large enough to accurately portray statistical trends. In this way it is
possible to examine the essential focus of this study, the way strains and stresses develop in
different grains.

When modelling polycrystalline material deformation there are several scales to consider,
including most notably the scale of the bulk volume and the scale of the grains. In such models
as we employ here the scale of dislocation motion is not considered; material deformation
is assumed to take place through dislocation motion along slip planes, but the details are
replaced by discrete slip modes. Properties and values quantifiable on the bulk scale include
macroscopic specimen strain, macroscopic stress and bulk elastic properties such as average
Young’s modulus and Poisson’s ratio. Similar quantities are defined on the crystal scale,
including lattice strains, anisotropic single crystal elastic moduli, crystal stresses and lattice
orientation.

In this section we first describe the model equations and formulation used and then discuss
instantiation of the specimens into the simulation framework using grains with different shapes
and packing arrangements.

2.1. Mechanical response of virtual specimens

An elastoviscoplastic FE formulation was used to simulate the response of the specimens to a
loading history of uniaxial tension. This FE formulation has the benefit of a priori satisfying
compatibility everywhere like other displacement or velocity-based formulations through the
use of continuous trial functions for the velocity. The equilibrium equations are satisfied in a
weak sense. The deformation is assumed to be quasi-static; that is, the effects of momentum
are small and can be neglected. The weak form of the equilibrium equations may be written as:

Ru = −
∫

B

tr
(
σ′T gradψ

)
dB +

∫
B

π divψdB +
∫

�

t · ψd� +
∫

B

ι · ψdB, (1)

where Ru is the residual to be minimized, ψ are vector weighting functions, t is the traction
vector, ι is a body force per unit volume, B is the volume of the body and � is its surface1.
The deviatoric Cauchy stress, σ′, and mean stress (negative of the pressure, π ) sum to the total
Cauchy stress: σ = σ′ − πI. Traction or velocity is specified over the boundary.

The stress is replaced ultimately with the velocity field through introduction of the
constitutive equations and the kinematic relation defining the velocity gradient. Equations
for the elastic and plastic responses are required to model the regimes of behavior that exist
in the tests. For the elastic behavior we use Hooke’s Law for cubic symmetry. For the plastic
behavior, we assume restricted slip along the close-packed planes and in the close-packed

1 Throughout this paper, boldface quantities denote vectors and tensors; scalars and components of vectors and tensors
are written using a normal weight font. Subscripts appear as descriptive labels for scalars or tensor components; there
is no use of indicial notation.
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directions. The elastic and plastic behaviors are combined through a kinematic decomposition
of the total deformation gradient, f, by the following three-part multiplicative decomposition:

f = f �f �f � = v�r�f �. (2)

Here f � is the purely plastic part of f arising from slip, f � is the lattice rotation which may be
written as r� and f � is the elastic part of f. The deformation gradient f � can be used to define an
intermediate configuration, B̂, which is a relaxed configuration obtained by unloading without
rotation from the current configuration B. Using this interpretation of B̂, the symmetric left
elastic stretch tensor, v�, is introduced. For the case of small elastic strains (e�), v� = I + e�,
where ||e�|| � 1 and I is the second order identity tensor.

The velocity gradient, l (≡∂u/∂x, where u is the velocity and x are the current coordinates),
is obtained by differentiation of the deformation gradient with time and is split into the
deformation rate tensor, d ≡ sym(l), and the spin tensor, w ≡ skw(l), expressed in the
current configuration B. These terms may be split further into spherical and deviatoric parts
to give:

tr(d) = tr(ė�),

d′ = ė�′
+ d̂

�′
+ e�′

ŵ� − ŵ�e�′
,

w = ŵ� + e�′
d̂

�′
− d̂

�′
e�′

, (3)

where a prime (·′) indicates the deviatoric component of a quantity and the (·̂) superscript
indicates mapping forward by r� according to

ŵ� = r�w�r�T and d̂
�′

= r�d�′
r�T (4)

to define the plastic deformation rate tensor, d̂
�′

, and the plastic spin tensor, ŵ�, in the relaxed
configuration B̂ (both w� and d�′

are defined relative to f �).
Equations for the elastic and plastic responses are introduced into the kinematic

decomposition given by equation (3). The elastic response follows a linear relation:

τ = Ce� with C = C(r), (5)

where C is the tensor containing elastic moduli for cubic crystal symmetry, which depends
on the orientation of the crystallographic lattice, r. The Kirchhoff stress, τ , is related to the
Cauchy stress, σ, through τ = βσ, where β = det(v�).

The viscoplastic flow rule is derived from the crystallographic slip and is defined as:

l̂
� = d̂

�′
+ ŵ� = ṙ�r�T +

∑
α

γ̇ α(T̂
α
), (6)

where T̂
α

is the Schmid tensor, T̂
α = bα × mα , and bα and mα are the slip direction and

the slip plane normal for the α-slip system in configuration B̂. The assumed slip systems for
the FCC crystals are the 12 systems with 〈1 1 0〉 directions and {1 1 1} normals. Using these

relations, the symmetric and skew symmetric parts of the plastic velocity gradient, d̂
�′

and ŵ�,
respectively, are defined as:

d̂
�′

=
∑

α

γ̇ αP̂
α

and ŵ� = ṙ�r�T +
∑

α

γ̇ αQ̂
α
, (7)

where

P̂
α = P̂

α
(r) = sym (T̂

α
) and Q̂

α = Q̂
α
(r) = skw (T̂

α
). (8)

4



Modelling Simul. Mater. Sci. Eng. 17 (2009) 015001 H Ritz and P R Dawson

Using the symmetric portion of the Schmid tensor to define the stress active on the α-slip
system , the plastic shearing rate, γ̇ α , is related to the resolved shear stress, τα , by a power law
relation:

γ̇ α = γ̇0

( |τα|
gα

) 1
m

sgn(τα) with τα = tr(P̂
α
τ ′), (9)

where gα is the slip system hardness, γ̇0 is a reference shear rate and m is the rate sensitivity
of slip. With the help of a time differencing of the elastic strain rate, the equations for the
elastic and plastic responses are merged in the rate form of the kinematic decomposition and
used to eliminate the stress in the equilibrium residual. The residual is cast in discretized form
through the introduction of piece-wise trial and weight functions to yield a matrix equation for
the velocity field at the end of each time step.

To complete the solution methodology the lattice orientations, r, and slip system strengths,
g, must be advanced over time. The lattice orientation evolves as a consequence of the spin
and is given by:

ṙ = 1
2ω + (ω · r)r + ω × r where ω = vect

(
ŵ� −

∑
α

γ̇ αQ̂
α

)
. (10)

Slip system strength (hardness) evolution is assumed to follow a Voce form, expressed as

ġ = h0

(
gs − g

gs − g0

)n

γ̇ where γ̇ =
∑

α

|γ̇ α|. (11)

The four material parameters in (11) are the initial slip system hardening rate, h0, the saturation
slip system strength, gs , the initial slip system strength, g0, and a hardening exponent, n. Each
of these equations is numerically integrated in concert with the incremental solution for the
motion. We discuss determination of these parameters in section 4.1.3.

2.2. Instantiation of virtual specimens

When dividing the FE domain into grains there are many choices including both regular
tessellations using one shape congruently repeated throughout space and irregular tessellations
using multiple (and not necessarily congruent) shapes to fill space. Using irregular tessellations
it may be possible to generate a less idealized and more realistic array of grain shapes, but there
are drawbacks. It often takes many more elements to represent a smaller number of grains.
Also, since we wish to observe the influence of grain shape and organization on crystal stress
distributions we choose to use only regular tessellations which have more easily quantifiable
and homogeneous attributes throughout the mesh. There are a limited number of parallelohedra
(polyhedra that fill space via parallel translations) in R

3 [6]. These are cubes, hexagonal prisms,
truncated octahedra, hexarhombic dodecahedra and rhombic dodecahedra. We chose cubes,
truncated octahedra and rhombic dodecahedra, following the choices in [1], and created FE
meshes of a unit cube with grains in each of those shapes. In all cases the elements are ten-noded
tetrahedra and grains are formed by sharing a common initial crystal orientation between groups
of these elements arranged in the correct shapes. Figure 1 shows a small number of grains
from each of those meshes, and figure 2 shows the complete mesh of octahedral grains, both
with and without the boundary grains, which demonstrates that incomplete grains are present
at the boundaries of the mesh to build a smooth unit cube volume. Delannay et al studied the
effects of grain discretization on texture evolution using both cubic and truncated octahedral
grains, and found the octahedral grains to be more effective at matching experimental trends for
texture evolution under plane strain compression [7]. In that study all elements were 8-noded

5



Modelling Simul. Mater. Sci. Eng. 17 (2009) 015001 H Ritz and P R Dawson

(a) (b) (c)

Figure 1. A small cluster of grains (showing the packing type) for (a) cubic, (b) dodecahedral and
(c) truncated octahedral grains. The distance between the centroids of the grains has been increased
to emphasize the grain shape and packing structure; the actual meshes are space-filling.

(a) (b)

Figure 2. (a) Complete mesh composed of octahedral grains, filling a unit cube of volume exactly.
(b) The same mesh with only the grains which have 72 elements, forming complete octahedra. All
partial grains have been stripped away from the boundary. In both subfigures, all elements forming
a single grain are given the same random shading to aid in visualizing the grains.

bricks, with 16 elements per octahedral grain and either one or 27 elements per cubic grain.
Here we use higher order elements with more degrees of freedom in each type of grain and
focus on stress distributions in the simulation results.

When a complete mesh is composed from each of the grain shapes, a unique packing
structure results. If you consider the centroid of each grain to be a lattice point and compose
unit cells based on the locations of these lattice points, cubic grains create unit cells equivalent
to a simple cubic (SC) pattern. Similarly, dodecahedral grains lie on lattice points whose
unit cell is equivalent to a face-centered cubic (FCC) lattice, and the octahedral grains form a
body-centered cubic (BCC) unit cell. These patterns are illustrated in figure 1. Table 1 shows
some interesting and relevant properties of the different grains. The attributes assumed to be
of most importance are the number of nearest neighbors and the number of degrees of freedom
per grain.
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Table 1. Geometric properties of different grain shapes and the meshes composed from them.
The ‘surface area per unit volume’ measurement assumes each grain has volume 1 [L3] and the
measurement itself is in units of [L].

Rhombic Truncated
Cube dodecahedron octahedron

Packing structure SC FCC BCC
Vertices 8 14 24
Edges 12 24 36
Faces (nearest neighbors) 6 12 14
Surface area per unit volume 6.00 5.35 5.31
Elements per grain 24 48 72
Degrees of freedom per grain 195 303 550
Grains in mesh 3375 2360 1241

3. Observations from diffraction measurements of in situ mechanical loading

Confidence in models can always be improved by showing favourable comparisons with
experiments. Conversely, the inability to reproduce observed behaviors exposes weaknesses
or limitations of the model, its implementation, or its robustness. The type of experiments
we use here are diffraction measurements on materials undergoing in situ uniaxial mechanical
loading. These in situ diffraction experiments provide data of particular relevance to grain
interactions, though some difficulties do arise. While much information is available on the
macroscopic scale, including the overall stress and strain through knowledge of the applied load
and initial cross section and through extensometer data, more limited information is available
on the crystal scale. Lattice strains can be measured by means of diffraction, but the stresses
cannot be measured directly in polycrystalline samples. A further complication arises in the
neutron diffraction (ND) techniques employed here because the lattice strains are not measured
in individual crystals but rather in groups of crystals sharing an axis of orientation, as described
in section 3.1. Since some information is lacking on the crystal scale or is known only as an
average over a crystallographic fiber, it is necessary to invoke modelling assumptions to bridge
the scales to the data that is available [8]. Previous efforts to bridge these scales include Voigt’s
isostrain (upper bound) [9], Reuss’s isostress (lower bound) [10] and the work of Kroner [11],
who utilized Eshelby’s [12] self-consistent model to find the polycrystal elastic constants based
on the anisotropic single crystal elastic constants. Bollenrath et al [13], Hayakawa et al [14],
De Wit [15] and Gnaupel-Herold et al [16] have all extended Kroner’s work to incorporate
elastic moduli measurable through diffraction.

In this section after briefly describing diffraction measurements in general, including both
bulk diffraction and micro-diffraction, we describe the data in which we are interested from
these experiments and the method of reducing them, focussing on those data that illuminate
the importance of grain morphology and discretization.

3.1. Diffraction experiments

In situ diffraction experiments consist of macroscopically loading a specimen through a
predetermined deformation path and performing diffraction measurements at various loads.
Typically the macroscopic loading is uniaxial in nature and can be either tensile or compressive,
though other types of loading are possible, such as high temperature and pressure [17, 18]; here
we use uniaxial tension. The ND measurements themselves consist of lattice strains at certain
macroscopic stress levels. Since these are uniaxial tension experiments, the macroscopic stress
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Figure 3. A typical measured diffraction peak, both unloaded and under load, along with Gaussian
distributions fit to the data. The individual data points refer to the number of neutrons detected at
the corresponding Bragg angle during a diffraction measurement.

value we use is simply the force applied, measured by a load cell, divided by the initial specimen
cross-sectional area, measured before the test begins. The lattice strains are found by taking
advantage of Bragg’s law [19]:

nλ = 2d̄hkl sin θ̄hkl, (12)

where n is an integer, λ is the wavelength of the incoming radiation, θ̄hkl is the diffraction angle
and d̄hkl is the spacing between {hkl} lattice planes. During a ND experiment for a particular
〈hkl〉, constructive interference consistent with Bragg’s law occurs along a fiber in orientation
space defined by

Rc = ±s, (13)

where R is the orientation matrix of a crystal, c is the crystallographic direction corresponding
to the 〈hkl〉2 currently under consideration and s is the sample direction corresponding to
the scattering vector, usually aligned either parallel or normal to the uniaxial tension axis.
The diffraction measurements cannot distinguish between grain satisfying (13). Therefore, in
diffraction of bulk specimens where the radiation beam covers a large volume of the specimen
all θ̄hkl and d̄hkl measurements are averages over groups of crystals, including both crystals with
identical orientations and crystals related by a simple rotation about the s axis. Furthermore,
there is a certain amount of experimental leeway in the alignment necessary between c and s
to contribute to a measurement. Equation (13) need not be satisfied exactly, but an alignment
between c and s within a small angular range (up to 5◦ for certain experiments) results in a
contribution to the diffraction measurement. An example of a measured diffraction peak is
shown in figure 3. The individual data points are counts from the detector at each specific
angle. A Gaussian distribution is fit to the measured data, and the center of that peak is θ̄hkl .
The peak intensity is related to the multiplicity of the (hkl) under consideration and the length
of time that the detector was counting and is not a factor for this study.

The measured spacing, d̄hkl , is compared with the reference spacing, d̄0
hkl , (measured at a

nominally zero load prior to any deformation) through (14) to determine the average normal

2 In cubic crystals, such as we consider here, 〈hkl〉 is always the direction perpendicular to the {hkl} planes, and we
forgo use of the convention of uvw to denote directions.
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component of lattice strain on {hkl} planes in the s direction, εD
〈hkl〉,

εD
〈hkl〉 = d̄hkl − d̄0

hkl

d̄0
hkl

. (14)

In addition to a shift in position, the diffraction peaks also experience a broadening and slight
decrease in maximum intensity as the crystals are loaded and strained.

In contrast to bulk diffraction, the beam size in micro-diffraction experiments may be
smaller than the size of an individual grain. In that case εD

〈hkl〉 is not the result of averages
among many grains, but can be measured on a crystal-by-crystal basis, or even at multiple
locations within a single crystal [20, 21].

3.2. Elastic anisotropy

The lattice strains as measured by bulk ND experiments will in general show different levels of
strain for different crystallographic fibers. This is partially due to elastic anisotropy in the single
crystal but is also heavily influenced by crystallographic texture and the arrangement of grains
and their neighbors. It is possible that grain morphology may affect the expression of elastic
anisotropy. There are two manifestations of elastic anisotropy of concern in this study. The
first is the single crystal elastic anisotropy and the second is the diffraction anisotropy, which
is measured from a bulk polycrystal. If grain interactions (i.e. neighboring grains imparting
tractions on each other, producing a more complicated stress state than that applied to the
macroscopic bulk) had no effect on the deformation response of each individual grain within a
polycrystal aggregate the diffraction anisotropy would closely mimic the single crystal value,
but as will be shown in section 5.1 that is not the case.

3.2.1. Single crystal. The single crystal elastic anisotropy, rE, is defined in the context of
uniaxial tension tests on single crystal specimens that have been manufactured with their tension
axes aligned with particular crystallographic directions. A directional Young’s modulus, E〈hkl〉,
may be defined for such an experiment in the 〈hkl〉 crystallographic direction as in:

E〈hkl〉 = σ〈hkl〉
ε〈hkl〉

. (15)

Here σ〈hkl〉 and ε〈hkl〉 are the normal components of crystal stress and lattice strain, respectively,
along the 〈hkl〉 direction which is the tension axis in the single crystal uniaxial experiment.
In face-centered cubic (FCC) materials, 〈1 1 1〉 is typically the stiffest direction and 〈1 0 0〉 the
most compliant; the ratio of the moduli in those two directions gives the greatest anisotropy
for the material for the given loading:

rE = E〈1 1 1〉
E〈1 0 0〉

. (16)

The property rE is defined entirely on the single crystal scale and values for various
materials can be found in handbooks. Typical values in metals include approximately 1 in
tungsten, 2.1 in iron, and 2.9 in copper; aluminum is reported as having rE=1.2 [22].

3.2.2. Polycrystal. The second manifestation of elastic anisotropy that we consider here is
the diffraction anisotropy, rD, which is the value found from ND experiments on polycrystals
and is inherently multiscale in nature. Lattice strains are measured in groups of crystals instead
of in single grains. Therefore, ε〈hkl〉 is unavailable to us, and we must instead make use of
εD
〈hkl〉 from (14). Also, since the particular stresses that are present in the individual grains are
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unknown, σ〈hkl〉 is unavailable to us as well. We must instead be satisfied with σmacro, which is
the axial component of the macroscopic engineering stress applied to the test specimen. Using
these values, we define the diffraction modulus in the 〈hkl〉 direction, ED

〈hkl〉, as:

ED
〈hkl〉 = σmacro

εD
〈hkl〉

. (17)

Further, rD may now be defined as

rD = ED
〈1 1 1〉

ED
〈1 0 0〉

. (18)

From equations (17) and (18) it would appear that rD could also be calculated simply as
εD
〈1 0 0〉/ε

D
〈1 1 1〉 since σmacro appears in both the numerator and the denominator, but in general

diffraction measurements of different (hkl)s are not made simultaneously. Though the nominal
desired load may be identical between measurements, the actual load, and therefore the actual
σmacro, may differ and (18) should be used.

Clearly, rD is far from the single crystal property rE. In addition to linking scales between
the macroscopic stress and the lattice strains, rD is also a product of averaging responses
in groups of largely independent crystals, each of which is subjected to a slightly different
micromechanical stress state from its physical neighbors within the aggregate. While the
diffraction anisotropy is influenced by the single crystal value, the two are not expected to
be equal. Studies have also shown that lattice strains measured after plastic deformation
can exhibit different behavior than those measured during purely elastic deformation, further
complicating measurement of elastic anisotropy [23–25]. The FE simulations utilized here
provide a method of connecting rD to rE. Using an input value rE, the value of rD can be
calculated following the method in section 4.2. This gives an indication of what single crystal
value may be present when the experimentally measured results are found.

The method of determining rD from experimental data is essentially to take a ratio of
slopes, each of which relates a change in macroscopic stress to a change in directional lattice
strain. During the ND experiments we collect lattice strains as in (14), which can then be
plotted against the scalar value of macroscopic stress at which they are measured. When
that process is repeated for each measurement of a specific lattice direction, a plot such as
figure 4(a) results. A simple linear regression can then be performed on the data, and the slope
of the fit line, as shown in figure 4(b), is identified as ED

〈hkl〉. This process is repeated for {2 2 2}
and {4 0 0} planes, which provide ED

〈1 1 1〉 and ED
〈1 0 0〉, respectively. Taking the ratio of these

two values gives rD for the sample.

3.3. Stress distributions

A second aspect of the mechanical response of polycrystals that relates to the interaction
of grains under load is the variability of stress within and among the crystals constituting the
bulk. The mutual constraints that grains place on each other are affected by a variety of factors,
including the degree of mechanical anisotropy, the strength of the crystallographic texture and
the geometry of the grains. Thus, the manner in which grains are discretized in a simulation
plays a role in the degree of variability in the computed stresses. While isolated grains of the
same orientation and shape would exhibit identical responses according to the model, stress
variation can stem from the influence of abutting grains. Each unique neighborhood of grains
can lead to unique constraints. Locally, stress may be elevated over volumes that experience
a strong influence of the constraints. The domains where stress concentrations arise are of
interest in assessing where plastic flow initiates and in predicting the location of failure sites.
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Figure 4. Each measurement of lattice strain in the 〈2 2 2〉 direction in the 2%Mg specimen both
(a) without and (b) with linear fits to the data from each unloading episodes. The slopes of the fit
lines in (b) are values of ED

〈2 2 2〉. The different symbols represent separate unloading episodes.

Published literature on this topic reports that variability in the stress exists during loading
and following unloading. The most direct evidence is available from x-ray diffraction methods
that permit interrogation of individual grains under in situ loading, such as the experiments
presented in [21]. The standard deviation of the axial component of the lattice strain in copper
under tensile loading was examined for twenty crystals sharing the same Bragg condition. The
standard deviations of the strain were computed from the peak shifts with changes in load and
were on the order of 6% of the average values.

Less direct evidence is available from peak broadening of in situ measurements on bulk
samples. Broadening occurs from several sources, some related to the instrument and others
to the sample, including effects of spatial heterogeneity of the stress and of defects in the
microstructure. These are difficult to separate. Examination of broadening during plastic
straining of aluminum and stainless steel alloys has been reported in [26]. In that paper, the
broadening from stress variations among crystals satisfying one Bragg condition was estimated
from simulation and subtracted from the measured overall increase in width. The contribution
to peak width from the stress variation was relatively small in comparison with the total change
in width which means that using the width changes to estimate stress variability may be prone
to error, especially when strain hardening is significant.

The difficulty in experimentally quantifying the spatial distribution of stress over a
polycrystal motivates the use of simulation to assist in this task and places a high expectation
on the quantitative accuracy of numerical estimates. Again, the sensitivity of the computed
responses to the grain discretization is potentially an issue. Intra- and inter-grain variabilities
are expected to depend on discretization owing to the differences in the numbers of neighbors
with each type of discretization and to the manner in which each grain geometry can be divided
by tetrahedral elements.

4. Modelling the experiments

Comparing simulation results for meshes with different grain discretizations must be done
for some particular deformation. Whether one of those grain discretizations is preferable
to another must be judged on the basis of data that can be extracted from experiments.
We use deformations taken from experiments that have been performed on an array of
aluminum–magnesium alloys and initialize the simulations to match the global responses. We
can then analyze the response of each mesh in terms of elastic moduli and stress distributions
to observe any effects of the different meshes used. In the FE simulations, all of the stress
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Figure 5. An example of the macroscopic deformation history to which the dogbone specimens
are subjected. The somewhat angular appearance of the curve is due to a low sampling rate of load
frame measurements. The actual response is smooth. ND measurements are taken at the conditions
marked in the figure.

and strain quantities are available at the crystal scale and their resultants over the bulk may be
computed. Material properties must be presumed a priori, macroscopic deformation is imposed
through boundary conditions, and all crystal strains and stresses are calculated during the
simulation. The FE formulation itself provides a method of linking between the macroscopic
and lattice scales, much as the methods described in section 3 have done.

4.1. Determination of model parameters

The experiments used to initialize the simulations are uniaxial tension on flat dogbone
specimens, and are explained in greater detail in [4]. Briefly, a range of aluminum–magnesium
alloys (up to Al–8%Mg) were subjected to a deformation history similar to that shown in
figure 5. A number of ‘unloading episodes’ are performed during the course of accumulating
a total macroscopic strain of less than 10%. During these unloading episodes several ND
measurements are made. The experiments focussed on strain variability are described in [21]
and consist of measurement of {4 4 0} reflections in 20 individual grains in a bulk copper
polycrystal measured with high energy XRD. The simulations are not explicitly based on
those experiments but the stress distributions found here are compared to those from [21].

Our goal is to uncover any grain discretization dependent effects on the elastic anisotropy
and lattice strain variability of the FE simulations. Therefore, we wish to hold as many variables
as possible constant between the various simulations. Necessary inputs include: (i) meshes,
(ii) boundary conditions and deformation histories, (iii) initial textures and (iv) material
properties. The meshes have been described in detail in section 2.2; the origin and generation
of each of the remaining inputs is described here.

4.1.1. Loading conditions. The boundary conditions are set to model the uniaxial tension
ND experiments. Those experiments were performed at a constant displacement rate of
4.23 × 10−3 mm s−1 (0.01 in min−1) on specimens with gage lengths of 50.8 mm (2 in).
Therefore, the approximate initial strain rate is 8.3 × 10−5 s−1. For all the FE meshes, the
domain is a cube with tension occurring in the z direction. Symmetry conditions are applied to
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the negative x, y and z faces of the mesh to prevent rigid body motions. Free surface boundary
conditions are applied to the positive x and y faces, which correspond to the lateral faces of
the tension specimen. A constant displacement rate is applied to the positive z face to match
the initial strain rate from the experiments.

The deformation history of every experiment followed the same protocol, as shown in
figure 5. To recreate that deformation history, certain load setpoints are chosen for each
material corresponding to the stress levels at which the unloading episodes initiated and at
which the ND measurements were taken. The boundary conditions and deformation histories
used do not vary from one mesh to another.

4.1.2. Texture initialization. Bulk texture measurements of both the initial and final
conditions were made on a triple-axis spectrometer for specimens of several of the materials [4].
Using these measurements we calculated the orientation distribution functions (ODFs) for those
materials. For the measured textures we found that in each material the initial texture is very
close to uniform. Therefore, for the materials for which a measured texture is unavailable, we
use a texture file that corresponds to a uniform ODF.

For the simulations each grain must be initialized with a specific orientation. Though no
attempt is made to exactly recreate, grain-by-grain, the orientations of the physical specimen,
as a whole the orientational texture of the FE domain should match that of the physical
domain. Our method of making that match is to create a list of thousands of orientations
that, taken together, recreate the ODF. When initializing the element (grain) orientations, we
sample randomly from that list. The ODF calculated from the mesh is relatively close to that
measured from the physical specimen. This method of texture initialization is independent of
the mesh used.

4.1.3. Material properties. The final type of input to consider is the material description.
Both the elastic and plastic constitutive parameters must be specified for the simulations.
Since we are dealing with cubic materials, there are three independent elastic moduli such
as the single crystal elastic moduli commonly refered to as c11, c12 and c44 [27]. These also
can be framed as an average Young’s modulus, E, average Poisson’s ratio, ν, and the elastic
anisotropy, rE [2]. Young’s modulus is measured from the macroscopic stress–strain curves
(the average value over the different alloys, 66.5 GPa, is used for all simulations) and Poisson’s
ratio is kept constant at 0.35. Finally, rE is varied as a parameter taking the values 1.0, 1.2 and
1.7. For each simulation, therefore, three sets of (c11, c12, c44) are used corresponding to the
invariant E and ν and the three values of rE, as shown in table 2. It is interesting to note that
to effect a change on the order of 50% in the single crystal anisotropy it is only necessary to
change the individual elastic constants between approximately 8% and 30%.

The parameters associated with slip in (9) and (11) remain to be considered. It is here that
the simulations can be said to represent different materials. Some of these parameters were
held fixed for all simulations, namely m = 0.02 and γ̇0 = 1.0, leaving the initial slip system
hardening rate h0, the initial slip system strength g0 and the saturation slip system strength gs

yet to be determined. Focussing on each experimental stress–strain curve in turn and using
only the dodecahedral mesh, the slip parameters were varied until the macroscopic stress–strain
curve from the simulation matched that from the experiment, as seen in figure 6(a). When that
match was achieved, those parameters were used for all three meshes, as shown in figure 6(b)
for one of the materials, which demonstrates the effect of sharing constitutive parameters
across meshes. The value of rE has very little effect on the macroscopic deformation since the
values of E and ν remain constant. Note that the grain shape appears to affect the hardening
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Table 2. Elastic material parameters used in FE simulations. All moduli are given in GPa.

rE c11 c12 c44

1.0 106.7 57.4 49.2
1.2 103.4 59.1 54.2
1.7 97.3 62.1 63.3

Figure 6. Macroscopic stress–strain curves showing the comparison between the experimental data
and the three different grain-type meshes. (a) All materials simulated with dodecahedral grains.
The solid lines are the simulation results and the marks indicate experimentally measured data. (b)
Results from the three mesh types for a single common set of both elastic and plastic constitutive
parameters.

Table 3. Viscoplastic material parameters used in FE simulations.

Material h0 (MPa) g0 (MPa) gs (MPa)

Al–1%Mg 340 17 51
Al–2%Mg 350 21.5 72
Al–5%Mg 400 44 130
Al–8%Mg 425 67 137

rate slightly, which can increase the stress at a given strain. Since the unloading episodes
are triggered by a macroscopic stress and not a plastic strain, differences in the ordinate are
more significant than differences in the abscissa in figure 6(b). Using the same slip parameters
for the different grain shapes appears to be a valid choice. The final choices for plasticity
parameters are shown in table 3.

A total of 36 simulations have been performed and analysed here: three sets of elasticity
parameters with four sets of plasticity parameters on each of three meshes.

4.2. Calculation of rD

Finding rD from the simulation results proceeds in much the same manner as from the
experimental data. The first step is to find lattice strains at each stress level, measured in crystals
satisfying (13). This is done by indicating those crystals which would contribute to a diffraction
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Figure 7. An illustration of elements that contribute to a single measurement during data reduction
from the mesh with cubic grains. (a) Complete mesh with contributory elements highlighted.
(b) Only those elements which contribute to a diffraction measurement. The elements shown are
those that have a misorientation angle less than 5◦ between their {1 0 0} planes and the tension axis
of the deformation.

measurement, in the same way that the neutron beam and detector illuminate and count
certain crystals in any given experimental configuration. For each element in the simulation,
a misorientation angle is calculated between the {hkl} plane normal and the scattering vector.
All elements that have a misorientation angle less than 5◦ are considered contributory. An
example showing elements that have been included in a particular measurement is given in
figure 7 for a specific (hkl). A single data point on the macroscopic stress versus lattice strain
plot is generated by taking the arithmetic mean of the normal lattice strains in the tension
direction across all of the included elements:

εsim
〈hkl〉 = 1

l

l∑
i=1

εi
〈hkl〉, (19)

where l is the number of contributory elements, εi
〈hkl〉 is ε〈hkl〉 in the ith element and εsim

〈hkl〉 is
εD
〈hkl〉 as calculated for the simulation. This is similar to using the center of the Gaussian peak

from the neutron diffraction data, as illustrated in figure 3. The stress level is found by taking
the load (which is found by integrating the normal stress across all the surface elements that
have an applied velocity) and dividing it by the initial cross-sectional area of the domain.

Exactly as for the ND data, the slope of a linear fit to the macroscopic stress versus lattice
strain in each direction is defined as ED

〈hkl〉 in that direction. The ratio of ED
〈1 1 1〉 to ED

〈1 0 0〉
provides the value of rD for that simulation.

4.3. Analysis of stress distribution

Two main types of stress distributions are considered: intergranular (among grains) and
intragranular (within grains). Intergranular stress variation is calculated by finding the average
value of σzz within each grain at any given load level during a simulation, then calculating
the standard deviation of those averages throughout the mesh. Intragranular stress variation
is calculated by finding the standard deviation of σzz within each grain and averaging those
standard deviations over all grains in a mesh. The intergranular stress may be thought of as the
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Figure 8. For the simulations of Al–8%Mg with rE = 1.7, the macroscopic axial stress is shown
versus the lattice strains. The slope of each line, averaged over the three grain shapes, is shown in
each figure.

variation of stress from one grain to another whereas the intragranular stress may be thought
of as the amount of variability of stress within each grain.

5. Results

5.1. Diffraction moduli

Following the scheme detailed in section 4.2, values of rD are determined from each simulation.
A typical example of the plots from which ED

〈2 2 2〉 and ED
〈4 0 0〉 are calculated is shown in figure 8.

Any difference in diffraction moduli between the simulations with different grain shapes
appears negligible. This means that the diffraction anisotropy appears relatively insensitive to
the grain discretizations used here.

In the experiments there is a slight trend of increasing rD with increasing magnesium
content. Using FE simulations, we introduce a method of relating the measureable rD back
to the actual material property rE. The resulting value of rD from specified rE is shown
in figure 9 for two sets of plasticity parameters. Slight variations appear between different
grain shapes, but figure 8 has demonstrated that those variations are small and not systematic.
The significance of this plot is the amount of damping seen between rE and rD. A single
crystal value of rE = 1 results in apparent isotropy in the diffraction moduli, as expected.
If the single crystal properties are isotropic, the particular arrangement of grains should not
influence the resulting lattice strains since all directions should be equivalent. As the single
crystal anisotropy increases, so too does the diffraction anisotropy. Over the range of rE

studied here, the FE simulations predict an approximate relationship between rD and rE as
(∂rD/∂rE) ≈ 0.3. Averaging over groups of crystals, each of which experiences unique
conditions from its neighbors, reduces the apparent elastic anisotropy by up to 30% from the
true single crystal property.

It is important to ask whether changes in other material parameters can impact rD as well.
Relationships between rD and the three slip system parameters that varied between simulations
of different materials (h0, g0 and gs) are shown in figure 10. Clearly the values of these slip
system parameters do not affect rD. Given the material deformation model in use here, the
only material parameter that has a significant impact on rD is rE.
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Figure 9. For the simulations of particular materials, rD is shown versus the input value of rE for
each grain discretization.
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Figure 10. For the simulations with cubic grains, rD is shown versus the input value of various
material parameters.

5.2. Stress distributions

Turning now to stress variations, both among grains (intergranular) and within grains
(intragranular), consistent trends with respect to the type of grain discretization emerge.
Standard deviations of the axial component of intergranular stresses are shown in figure 11
for one material. Comparable trends are seen in each material modelled. The top and bottom
of the last unloading episode are used to generate the data shown. The most variation is
seen in the simulations with cubic grains, the least in the octahedral grains. As discussed
in section 3.3, typical values found in experiments for variation of strain between different
grains satisfying the same diffraction condition are approximately 6% of the average value.
It is difficult to make an analogous calculation here since elements that begin the simulation
sharing an identical orientation do not always maintain that close orientational relationship
through the deformation. In the simulations, a diffraction condition is satisfied (or not) by
elements, not by grains, as seen in figure 7(b). Here, we consider all grains in the mesh and
see variation in stress of approximately 12%. This higher value is not surprising since portions
of the material with different orientations should be expected to experience different stresses.

The trends of intragranular variations are shown in figure 12, and they are opposite to
those of intergranular stresses in terms of grain shape dependence: cubic grains show the least
variation and octahedral grains the most. The larger number of neighbors experienced by the
octahedral grains may generate a greater variety of boundary conditions on a single grain than
in the cubic grains. This explains both the larger variation of stress within each grain and the
smaller variation of stress between grains for the octahedral shape. If each grain is allowed to
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conform to the neighboring crystals on each side, though the variation within a grain may be
relatively large, each grain in the mesh will experience that condition; in effect each grain is
becoming more like the whole, which can act to diminish differences between different grains.
In the cubic grains (with only six neighbors) each grain can act more independently and is
less likely to be experiencing a neighborhood similar to other grains, thereby emphasizing
differences between grains. One aspect of the differences in grain discretizations whose
influence we cannot rule out is the greater number of elements comprising the octahedral
grains. Due to their differences in shape it is difficult to mesh each type of grain with identical
numbers of elements and thus to remove this unwanted degree of freedom. The larger number
of degrees of freedom within the octahedral grains may enhance the effects of having more
neighbors.

Looking at the magnitudes of the standard deviations in figures 11 and 12, it is at first
somewhat surprising that the amount of stress variation within grains is equal to or greater than
the stress variation between different grains. This is most likely due to the averaging of stress
within grains that takes place for the intergranular stress calculation. The standard deviation of
stress over all elements in the mesh, with no averaging within grains, is shown in figure 13 for
the same conditions as figures 11 and 12. There the magnitude is greatest of all, as expected.

In both the intergranular and intragranular stress variations there is a common trend
wherein the standard deviations are independent of rE in the loaded state but highly dependent
on rE in the unloaded state. The stress state is constrained by the plasticity model to lie on the
flow surface during plastic flow. Recall that while modelling deformation of each material,
the plasticity parameters do not change while rE does. Therefore, the flow surface is relatively
independent of the elasticity parameters. Similar, but not identical, stress states are reached
once the material yields and begins to flow. This produces comparable values of standard
deviation of the stress distribution. In contrast, unloading from the plastic regime is essentially
an elastic event, and changes in stress with unloading are directly dependent on the elastic
moduli. Interestingly, the stress changes occurring under higher elastic anisotropy produce
a more uniform stress state (lower values of the standard deviation of stresses) than if the
elasticity is more isotropic. As can be seen, for the elastically isotropic case of rE = 1.0 there
is very little difference between the loaded and unloaded states. This is expected since as the
loads are removed all crystals will tend to relax and unload to the same degree, which would
give no source for changing the relative stress levels that were established under load. For
FCC crystals with rE > 1.0, the crystallographic dependence of the strength and elasticity
both show an increase from the 〈1 0 0〉 to the 〈1 1 1〉 directions, which may allow crystals with
high stress to more readily relax upon unloading.

6. Conclusions

Deformation and in situ ND of several aluminum alloys has been modelled using
elastoviscoplastic FE simulations with meshes formed from grains of different shapes and
packing arrangements. The diffraction anisotropy calculated from the simulation results has
been compared across meshes and materials. By changing the individual single crystal elastic
moduli by less than 30%, the single crystal anisotropy has been changed by over 50%. In doing
so, the simulations show a relationship between rD and rE of (∂rD/∂rE) ≈ 0.3 independent of
the grain discretization.

Intergranular and intragranular stress variations are found to depend consistently on the
grain shape, with octahedral grains showing the most intragranular and least intergranular
variation, and vice versa for cubic grains. The amount of stress variation for all meshes is
reasonably consistent with values found in experiments. For all grain shapes, stress variation
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Figure 11. Trends in stress among grains (intergranular) are shown for both loaded (solid markers)
and unloaded (empty markers) configurations. For each grain an average stress value is computed,
and the standard deviation between those granular averages is shown in units of MPa. The
macroscopic stress level in the loaded state is ∼200 MPa.

Figure 12. The average standard deviation of the axial component of stress within grains
(intragranular) is shown for both loaded (solid markers) and unloaded (empty markers)
configurations in units of MPa. The macroscopic stress level in the loaded state is ∼200 MPa.

is maximal at higher loads and decreases upon unloading. Larger elastic anisotropy causes a
larger drop in stress variation with unloading.

When deciding which grain discretization to utilize in FE simulations it is necessary
to weigh the relative benefits of different options. Cubic grains, as realized in this study,
have fewer degrees of freedom, sharper corners and fewer neighbors than octahedral grains.
This allows a greater number of crystals to be modelled with a given allotment of computing
resources. If the main interest of the project is something for which a greater number of
grains would be a major benefit (for example, texture evolution) this may be a good choice. If,
however, capturing trends in stress development and variation is more important, the additional
degrees of freedom and more realistic neighborhoods of the octahedral grains may be a better
choice.
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Figure 13. The standard deviation of the axial component of stress over all elements in the mesh
is shown for both loaded (solid markers) and unloaded (empty markers) configurations in units of
MPa. The macroscopic stress level in the loaded state is ∼200 MPa.
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