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Abstract

This paper examines the optimal time to adapt to climate change.  We take the
perspective of a farmer growing a crop in a stochastic environment.  The farmer faces
stochastic seasonal growth, which makes harvest at the end of any season a random
variable.  Within a season, crop biomass is assumed to grow according to a continuous-
time Itô process.  The standard deviation rate of the Itô process is itself stochastically
evolving, season to season, as a result of climate change.  We assume the seasonal
standard deviation rate follows a discrete-time random walk, with positive drift. As the
seasonal standard deviation rate grows, expected biomass at harvest, and thus revenue,
declines.  The farmer has the option to make an investment, say in an irrigation system,
which will reduce the seasonal standard deviation rate.  The investment in irrigation has a
fixed cost and also results in higher cultivation costs during a season.  The question
becomes  “How large must seasonal variation become before it is optimal to make the
investment and adapt to climate change?”

*Jon M. Conrad is a professor and Koji Kotani is a Ph.D. candidate in the Department of
Applied Economics and Management at Cornell University.  Correspondence should be
addressed to Professor Conrad at 455 Warren Hall, Cornell University, Ithaca, New York,
14853, or by email to  JMC16@cornell.edu.
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Adapting to Climate Change

Potential changes in the frequency, intensity, and persistence of climate extremes (for
example, heat waves, heavy precipitation, and drought) and in climate variability, … are
emerging as key determinants of future impacts and vulnerability.

Intergovernmental Panel on Climate Change (2001)

Introduction and Overview

By the year 2100, many of the scientists studying climate change believe that the

increased concentration of greenhouse gases will lead to an increase in annual global

mean surface temperature in the range of 1.4 to 5.8º C.  Theory and mathematical models

also project an increase in climate variability, specifically the frequency of “climate

extremes.”  It is the increase in climate variability that raises the greatest potential for

adverse impacts within human (socioeconomic) and ecological systems.  The

vulnerability of different human populations and plant and animal species will depend on

the speed of climate change and on the ability to adapt.

Adaptation to climate change can take many forms.  In agriculture, it may involve

the adoption of later maturing cultivars, changing the mix of crops, or altering the timing

of field operations [Kaiser et al. (1993)] .  In the extreme, it may involve abandonment of

land and human migration, as in the dust bowl of the U.S. Midwest during the 1930s or in

Africa today.

This paper is concerned with the timing of capital investments undertaken as a

means of adapting to climate change.  We assume that such investments will involve an

initial capital cost and perhaps higher variable cost during cultivation after investment.  It
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is further assumed that the investment may be so specialized that, if not technically

irreversible, it would be costly to reverse, and any scrap value would be a small fraction

of the initial capital cost.  Two investments come to mind.  Irrigation equipment, adopted

because of the increased frequency or duration of drought, might be removed and sold at

a later date.  Investment in better drainage, for a field now subject to higher levels of

precipitation, might be costly to undo, and the drainage tile itself is likely to be worthless

as scrap.

We assume these investments are risky, in the sense that their use and value will

still vary from season to season, and thus the future net return from making the

investment is not known with certainty.  A farmer, contemplating an investment to cope

with climate change, is faced with the classic economic problem of risky, irreversible

investment [Dixit and Pindyck (1994)].  The proper evaluation of such investments

requires their analysis as real options [Trigeorgis (1996)].

This paper is organized as follows.  In the next section we develop two models.

The first is an infinite-horizon model, which might be appropriate for a corporate or

family farm with the expectation of long-term operation.  The second model is a finite-

horizon model, which might be appropriate for a farmer with no heirs interested in

continued farming, and with a plan for selling land and equipment at some future date as

a source of retirement income.  This section is followed by numerical analysis for a

hypothetical farm growing a single crop.  In the infinite-horizon model there is a single

standard deviation rate that triggers the corporate or family farm to make the investment

to adapt to a more variable climate.  In the finite-horizon problem, with the farmer

planning divestment prior to retirement, there is a schedule of critical standard deviation
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rates which increase as the farmer nears retirement.  Quite logically, the farmer is less

interested in a costly investment to cope with a more variable climate the nearer he or she

is to retirement.  The final section gathers conclusions and suggests future lines of

research.

The Infinite- and Finite-Horizon Models

Let X=X(t) denote the biomass of a crop during a growing season.  We assume a

continuous, intra-season, stochastic growth process given by

    

€ 

dX = rX(1−X K)dt + σsXdz (1)

where  r>0  is an intrinsic growth rate,  K>0  is the maximum crop biomass at the end of

a season if there were no stochasticity to growth,  σs  is the standard deviation rate during

season s, and  dz  is the increment of a Wiener process.  Solving the Kolmogorov forward

equation for the steady state density of crop biomass, Merton (1975) and Dixit and

Pindyck (1994) show that X(t) will have a gamma distribution as   

€ 

t →∞ .  The expected

crop biomass, at the end of season s, may be approximated by

    

€ 

E{Xs} = K(1 −σs
2 (2r)) (2)

By proper selection of the time step and appropriately scaling of the intrinsic growth rate,

r, Equation (2) will provide a good approximation for expected harvest during season s,

when the standard deviation rate is σs.  Note, if  σs  increases from season to season,
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expected harvest declines.  In Figure 1 we show three realizations, from a sample of

10,000 realizations, where  

€ 

X0 = 0.01, Δt=0.001, r=0.08, K=1, σs=0.05 and the growing

season was  T=120 days.  The mean harvest, for all 10,000 realizations, was 0.8935, with

a standard deviation of 0.1369; not significantly different from   

€ 

K(1−σs
2 2r)=0.9844.

Figure 1.  Three Realizations of Crop Biomass

Suppose, because of climate change, that the standard deviation rate is evolving

according to a discrete random walk with drift as given by

  

€ 

σs+1 = µ + σs + εs+1 (3)
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where  µ>0  is the drift rate in the seasonal standard deviation of crop biomass and

  

€ 

εs+1 ~ N(0,σε
2 ).  It can be shown that the distribution of σs+1, conditional on σs, is given

by

  

€ 

f (σs+1 |σs ) =
1

2πσε
e−(σs+1−(µ+σs ))2 2σε

2
(4)

At the start of season s, with r, K, and σs known, the farmer has an expected net revenue

of

  

€ 

Ns = pK(1−σs
2 (2r)) − c (5)

where  p>0  is the per unit commodity price at harvest and  c>0  is the cost of cultivation

and harvest.

Suppose the farm is owned by a corporation or a family with an expectation of

multi-generational succession.  Suppose further that the corporation or family can make

an investment which will stabilize (fix) the seasonal standard deviation in crop growth at

  

€ 

σI < 2r .  If the investment is adopted after season  s  and is in place for the start of

season  s+1, the expected discounted net revenue with the investment  would be given by

  

€ 

N = Ns − I + ρs[pK(1−σI
2 (2r))− k]

s=1

∞

∑ = Ns − I + [pK(1−σI
2 (2r)) − k] δ (6)
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where  ρ=1/(1+δ)  is the annual discount factor,  δ>0  is the annual discount rate, and

k>c  is the cultivation and harvest cost with the investment.  The value function for a

farmer with the option to invest depends on the current standard deviation rate and is

given by

  

€ 

V(σs ) = Max{Ns + ρE[V(σs+1 |σs )],  N} (7)

where the term   

€ 

ρE[V(σ t+1 |σs )] is the expected discounted value of not investing at the

end of season  s  but preserving the option to invest at the end of season  s+1.  In this

infinite-horizon problem there will exist a critical standard deviation,  σ*, which makes it

optimal for the corporation or family to pay the fixed cost  I  and incur the higher

cultivation cost  k  in order to take advantage of the lower standard deviation rate,

  

€ 

σI < σ*.  It is not possible to derive an analytic expression for σ*, but we will be able to

solve for it numerically as part of the solution to the finite-horizon model, which we

present next.

Now consider the problem for a farmer who is age 30 in season s=0, and who

plans to retire at the end of season S=35, at which time he will sell the land for L dollars

and receive S dollars in scrap value if an investment was made in any season 0 ≤ s < S.

In the finite-horizon problem we need to numerically solve for the value function V(s,σs).

Since the last season that the investment could be made is  s=34, we start by considering

the boundary values for V(34,σ34) assuming that the investment has not been adopted

prior to s=34 and that   

€ 

0 ≤ σ34 ≤ 2r .  Then,
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€ 

V(34,σ34 ) = Max[N34 + ρ[E[V(35,σ35 |σ34 )] + L],  N34 − I + ρ[pK(1−σI
2 (2r)) − k + L + S]]

(8)

The other boundaries are V(s,0) and   

€ 

V(s, 2r )  for s=0,1,…,33.  When σs=0,

  

€ 

V(s,0) = pK − c + ρE[V(s +1,σs+1 | 0)] (9)

When   

€ 

σs = 2r  expected harvest is zero in season  s  (E{Xs}=0) and we assume there is

no cultivation nor harvest cost in season  s.  The farmer is faced with a decision of

making the investment to reduce the standard deviation to   

€ 

σI < 2r , or to leave the land

fallow in season  s  and hope that the standard deviation rate stochastically declines in

season  s+1.  This yields the boundary condition

  

€ 

V(s, 2r ) = Max[ρE[V(s +1,σs+1 |σs )],−I + [pK(1−σI
2 (2r) − k](1−ρ35−s ) δ + ρ35−s(L + S)]

(10)

With boundary conditions (8) – (10) we can solve for the “interior” values V(s,σs)

using stochastic dynamic programming.  These values will satisfy the H-J-B equation

  

€ 

V(s,σs ) = Max[Ns + ρE{V(s +1,σs+1 |σs )},

               Ns − I + [pK(1−σI
2 (2r) − k](1−ρ35−s ) δ + ρ35−s(L + S),]

(11)
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We expect that the critical standard deviation rate,   

€ 

σs
*, will increase with age (as

the farmer nears retirement).  The intuition is obvious.  Even through a more variable

climate may be reducing expected crop yield, and thus net revenue,  σs  would have to be

higher as the farmer nears retirement to induce him to pay the fixed cost,  I>0,  when

there may be only a few seasons left, at  σI, to recoup that fixed cost via higher yields and

larger net revenues.

We also have economic intuition about the effect that a change in  µ, the rate of

climate change,  I, the cost of investment to adapt to climate change,  k, the variable cost

of operating the new investment,  S, the scrap value of the investment upon retirement,

and  σI,  the post-investment standard deviation rate.  If  µ  or S  increase, or if  I,  k  or

σI  decrease, the entire   

€ 

σs
* -schedule will shift downward in  (s-σs)  space.  See    

€ 

σs
*′  in

Figure 2 below.

Figure 2. The critical   

€ 

σs
*-Schedule for a Finite-Horizon Problem

s

  

€ 

σs

  

€ 

σs
*

  

€ 

S = 35
0

  

€ 

σs
*′
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Numerical Analysis of a Hypothetical Crop

In this section, we present some numerical results for a hypothetical crop and a

variance-reducing investment.  We solve the finite-horizon problem for the    

€ 

σs
*  schedule.

For a young farmer, say age 30 in season s=0, the value    

€ 

σ0
*   may give us an

approximation of the unique critical standard deviation rate,  σ*,  for the infinite-horizon

problem.  We return to this aspect at the end of this section.

We assume crop biomass is an Itô variable whose evolution is defined by

Equation (1) with  r=0.08  and  K=1.  The seasonal standard deviation rate,    

€ 

σs,  evolves

according to the random walk with drift as given by Equation (3).  We assume that

µ=0.0025  and the random variates,   

€ 

εs+1  are independently drawn from a normal

distribution with mean zero and standard deviation  σε=0.01.

Equation (3) is approximated by a Markov transition matrix.  We partition the

interval 
  

€ 

σs ∈ 0, 2r[ ] into M equally-spaced points.  Let index i be 
    

€ 

i ∈ 0,1K,M{ }, and

let   

€ 

σ i = i ⋅ Δσ  for   

€ 

Δσ = 2r / M .  All possible values for the standard deviation rate,  σs,

are represented by the   

€ 

M +1 points      

€ 

σ i ,  i = 0,1K,M.  The Markov transition matrix is an

  

€ 

(M +1) × (M +1)  matrix with elements    

€ 

Pij, for     

€ 

i, j = 0,1K,M , where Pij represents the

probability that  σs+1=σj  given that  σs=σi.  The transition probabilities can be easily

computed from Equation (4).

Given the Markov transition matrix, the H-J-B equation is reformulated as
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€ 

V(s,σ i ) = Max[Ns + ρ PijV(s +1,σ j |σ i )
j=0

M

∑ ,

             Ns − I + [pK(1−σI
2 (2r) − k](1−ρ35−s ) δ + ρ35−s(L + S)] (12)

As   

€ 

M→∞ , the solution to Equation (12) converges to that of Equation (11).  Using

Equation (12), the numerical values for V(s,σs) are obtained by solving backward from

s=34  to  s=0.  The values,    

€ 

σs
*, which trigger investment for each season (age=30+s) are

recorded and curves, similar to those posited in Figure 2 can be drawn.

For the base-case, in addition to  r=0.08,  K=1,  µ=0.0025 and  σε=0.01, we set

I=30,  k=4,  c=2,  L=50,  S=10,  ρ=0.95,  σI=0.12,  and  p=10.  The base-case    

€ 

σs
* -

schedule is shown in Figure 3.

Figure 3.  The Base-Case    

€ 

σs
* - Schedule
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Next, we do some sensitivity analysis, to verify our economic intuition, by

changing a single parameter in the base-case parameter set.  For  µ,  I,  and   k,  we show

the change in the    

€ 

σs
* - schedule for values above and below their base-case setting.

For µ, the drift rate for seasonal standard deviation, we compute the    

€ 

σs
* -

schedule for  
  

€ 

µ = 0.00,0.0025,0.005{ }.  All other base-case parameters are unchanged.

Figure 4 shows the results, where blue, green and red lines depict the   

€ 

σs
* - schedules for

  

€ 

µ = 0.00,0.0025,0.005{ }, respectively.  Note, as  µ  increases, the    

€ 

σs
* - schedule shifts

downward.

Figure 4.   The   

€ 

σs
* - Schedules for 

  

€ 

µ = 0.00,0.0025,0.005{ }

Next we compute the    

€ 

σs
* - schedules for 

  

€ 

I = 15,30,45{ } .  Figure 5 shows the

results, where blue, green and red lines show the   

€ 

σs
*-schedules for 

  

€ 

I = 15,30,45{ } ,

respectively.  Note, as  I  increases, the    

€ 

σs
* - schedule shifts upward.
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Finally, we changed the value of  k  to analyze how the difference between the

cultivation cost with the investment and the cultivation cost without the investment

  

€ 

(k − c) > 0 ,  affects the   

€ 

σs
* -schedule.  The three values were   

  

€ 

k = 2,4,6{ } .  Figure 6

shows the results, where blue, green and red lines show the   

€ 

σs
*-schedules for 

  

€ 

k = 2,4,6{ } ,

respectively.  Note, larger values of  k cause the    

€ 

σs
* - schedule to shift upward and that

the    

€ 

σs
* -schedule is especially sensitive (for our hypothetical crop) to increases in  k.

Figure 5.  The   

€ 

σs
* - Schedules for 

  

€ 

I = 15,30,45{ }
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Figure 6.  The   

€ 

σs
* - Schedules for 

  

€ 

k = 2,4,6{ }

We do not show the comparative statics for  σI  and  S, the seasonal standard

deviation rate after making the investment, and the scrap value of the investment upon

retirement.  We simply note that as  σI  decreases or  S  increases, other things equal, the

  

€ 

σs
* - schedule numerically shifts downward, as economic intuition would suggest.

Given a   

€ 

σs
* -schedule, it is important to keep in mind that the farmer does not

invest unless a   

€ 

σs- realization “hits” or exceeds the critical value for season     

€ 

s =1,2,KS,

assuming  *
00 2.0 σσ <= .  In Figure 7, two sample realizations were generated using the

Markov Matrix approximation for Equation (3).  The    

€ 

σs
* - schedule, in blue, corresponds

to our base-case set of parameters.  The green    

€ 

σs-realization hits the    

€ 

σs
* -schedule at

s=13, while the red    

€ 

σs -realization never reaches the    

€ 

σs
* -schedule and the farmer never

finds it optimal to adopt the investment.  So, while we can numerically determine the
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optimal    

€ 

σs
* - schedule for any given parameter set, whether our hypothetical farmer

invests or not depends on the particular realization, or “climatic sample” the farmer

experiences.

Figure 7.  Invest If and When   

€ 

σs ≥ σs
*: Base-Case Parameters and   

€ 

σ0 = 0.2

Finally, we note that if the   

€ 

σs
* - schedule is horizontal for the early seasons (of a

young farmer) that    

€ 

σ0
*   will approximately equal the unique trigger value,  σ*, for the

infinite-horizon problem.  This will be the case if the discounted value of the investment

over a 35-year horizon approximates the discounted value over an infinite horizon.  In

Table 1 we report comparative statics for the infinite-horizon problem.  Here we choose a

sufficiently long period,    

€ 

s =100,  to approximate the unique value σ*.  The   

€ 

σs
* -

schedule is horizontal as  s  approaches zero (the first season).  The same value for   

€ 

σ0
*   is

also obtained when we further lengthen the finite horizon to  s=500.
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Table 1.  Comparative Statics for  σ*  in the Infinite-Horizon Problem

Parameter r K µ σε p c σI δ k I

σ* + - - + - - + + + +

For the infinite-horizon problem, an increase in  K,  µ,  p, or  c, will reduce  σ*, while an

increase in  r,  σε,  σI,  δ,  k, or  I will increase σ*.

Conclusions and Future Research

In this paper we have developed a model that answers the question “When should

a farmer make a costly investment in response to climate change?”  We feel the model

has many features that make it realistic and a “vehicle” for applied/empirical research.

First, we modeled crop growth within a season as a continuous stochastic process.  The

standard deviation rate,  σs,  has the plausible effect of reducing expected harvest at the

end of a growing season.  The model assumed that the seasonal standard deviation rate

for crop growth was itself a random variable, evolving, season to season, according to a

discrete-time random walk.  If the growing atmospheric concentration of CO2 is causing

the climate to become more variable, we would presume that the discrete-time random

walk for σs has a positive drift (µ>0).  The climate-adapting investment was viewed as a

way to reduce seasonal variance, increase expected harvest, and thus revenue.  For an

infinite-horizon problem, suitable for a corporate or long-lived family farm, there will be

a single critical standard deviation rate that triggers investment.  For a single farmer, with
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no agricultural heirs, there will be a    

€ 

σs
* - schedule, with the critical standard deviation

rate, that triggers investment, increasing as the farmer nears retirement.

MATLAB programs where written to numerically solve the finite-horizon

problem for a hypothetical crop and farmer.  Sensitivity analysis was conducted to

confirm that the model, specifically shifts in the    

€ 

σs
* - schedule, was consistent with

economic intuition.

The task now is to find an appropriate panel data set which would allow the

estimation of model parameters.  The ideal data set would contain crop biomass measures

for a randomized set of non-irrigated and irrigated plots, over time.  Such a panel would

allow estimation of  r,  K,  and the standard deviation rates for crop biomass, within a

season, for both non-irrigated (σs) and irrigated (σI) plots.  Time-series estimates of the

standard deviation rate for non-irrigated plots would, in turn, permit the estimation of  µ

and  σε.  It would also be possible to test whether  σI  is stationary over time.  We will be

surveying crop scientists to see if such a panel data set exists, and if not, how the model

might be calibrated based on a statistical analysis of the available data.
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