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CAC Storage Challenge
• Vendor Lock-In

– DDN storage is end-of-life

• Fragmentation 
– Fragmented storage systems: directly attached, Equallogic SAN
– Too much stand by capacity
– Unwanted storage cannot be easily re-deployed elsewhere

• Scalable Object Storage
– We don’t have one

• Need A Solution Soon!
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Ceph: Unified File Storage
• Object

– Native LIBRADOS (Reliable 
Autonomic Distributed Object 
Store)

– RADOS Gateway provides 
S3/Swift REST API 
compatibility

• Block: 
– Linux kernel (krbd) and KVM 

(librbd) support
– provides snapshotting and 

cloning capabilities

• File: CephFS
– Not yet supported in 

production environment
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Ceph Features
• Hardware Agnostic

Runs on commodity servers with directly attached storage. Not locked in a specific hardware 
platform.

• Flexible
Can define pools of storage with different redundancy rules (replication or erasure coding), disk 
types, geographic placement, depending on user requirements.

• Scalable
In both bandwidth and capacity. No metadata servers. Silent clients do not generate network 
traffic/cluster load.

• Self-Healing
Recovers automatically after disk or server failures.
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Ceph Storage Cluster
A Ceph Cluster consists of:

• Ceph Nodes
• Each node hosts 

multiple OSDs (object 
storage devices)

• Each OSD has:
• 1 hard disk
• 1 xfs file system
• 1 Ceph OSD 

daemon
• (optional) journal 

hosted on a 
separate SSD

• Monitors (min 3)

• Optional RADOSGW for 
providing S3/Swift 
compatibility
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Ceph Node Hardware Recommendations
• CPU: 1 GHz (Hyperthreaded) modern CPU core per OSD

• RAM: 1 GB per each TB of hosted data

• No more than 16 OSDs per node in I/O intensive environments (e.g. hosting block 

devices)

• SSD: max 6 OSD journals per SATA or SAS connected SSD
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Ceph OSD Daemon
• OSD is primary for some objects:

• Serves data to clients
• Maps versions are reconciled with the clients as part of each transaction. Update clients with 

new maps when needed.
• Responsible for replication
• Responsible for coherency
• Responsible for re-balancing
• Responsible for recovery

• OSD is secondary for some objects:
• Controlled by primary OSD
• Can become primary

• Transactions with clients are atomic

• Notifies monitors when disk or other OSD failures are detected

18 March 2016 www.cac.cornell.edu 7



Monitors (MON)
• Maintain the cluster maps

• MON Map
• OSD Map
• MDS Map
• PG Map
• CRUSH Map

• Provide consensus for distributed decision making
• Each MON knows about all the other MONs in the cluster
• First establish a quorum of more than half of MONs so an odd number of MONs is needed in 

the cluster
• MONs in a quorum can distribute maps to OSDs and clients. Clients request cluster maps 

from a MON only when the primary OSD fails.

• Monitors are not in data path
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Data Placement
Pools
Pools are logical partitions in the cluster with the following attributes:

• Ownership / access

• Protection type: replicated or erasure coding

• Number of placement groups

• CRUSH placement rules
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Data Placement (Cont’d)
Placement Group (PG)

• The cluster is split into Placement Groups (PGs)
• A PG contains a collection of objects
• An object’s PG is determined by CRUSH hashing the object name against the number of PGs 

in the pool.
• A PG’s location is determined by CRUSH according to desired protection and placement 

strategies.
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Data Placement (Cont’d)
OSG States

• In or out: an OSD is IN if PGs are mapped to it.  

• Up or Down: an OSD is Up if it can serve data.

• Example:

– An OSD is In and Up if it serves its data normally.

– An OSD is In and Down if it contains objects but cannot serve the data (temporary 

failure).
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Data Placement (Cont’d)
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CRUSH (Controlled Replication Under Scalable Hashing)

• CRUSH is Ceph’s data distribution mechanism:
• Distributes objects into PGs.

• Distributes PGs onto OSDs.

• Psuedo-random algorithms:
• Deterministic

• Clients can compute data

location from cluster 

maps. No metadata 

server required.



CRUSH (Cont’d)

• Rule-based configuration
• replica / erasure coding
• OSD weight: how much data should go to an OSD.
• OSD primary affinity: which OSD will be selected as primary
• CRUSH Map:

• List of all Ceph nodes 
and OSDs

• Buckets: definition of 
existing infrastructure 
(sites, rows, racks, 
servers)

• Placement rules

Data Placement (Cont’d)
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Ceph OSD Failure

• ceph-osd daemon dies
• Peers heartbeats fail; peers inform monitor
• New OSD map published with osd.123 as ‘down’

• PG maps to fewer replicas
• If osd.123 was primary in a PG, a secondary OSD takes over

• What happens if a client tries to contact osd.123 to access objects stored there?
• PG is “degraded” (N-1 replicas)
• Data redistribution is not triggered

• Monitor marks OSD “out” after 5 minutes (configurable)
• PG now maps to N OSDs again
• PG re-peers, activates
• Primary replicates to the “new” OSD

Failure Is the Norm
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• Each OSD has a journal implemented by a ring buffer
• By default the journal is store on a partition on the OSD’s disk.
• Optionally the journal can be on a separate shared SSD on the same node. A SATA or SAS 

connected SSD can host journals for up to 6 OSDs; a NVMe SSD can host up to 12.

• Ceph OSDs
• Record each write operation to the journal before reporting the operation as completed
• Commit the operation to the file system whenever possible
• Replay the journal upon OSD restart.
• Serve read request from the file system and never the journal.

• The primary OSD acknowledges to the client only after all secondaries report 

their write operations as completed (i.e. record the write operation in journal)

Ceph Journal
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• Native support for both physical servers (krbd) and KVM VMs (librbd)

Ceph Block Device
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• Need to host RBDs in replicated pools; erasure coded pools are not supported.

• Snapshots
• Instantly created
• Read-only
• Do not take up space… until original data changes (copy-on-write) 

• Clones
• Are copies of snapshots
• Writable
• Do not take up space… until original data changes or clones are written to (copy-on-write)

Ceph Block Device Features
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• Eucalyptus
• Currently supported for block storage (EBS volumes)
• Currently not supported for object storage. Work is being done on using Ceph for object 

storage, either using native librados or RADOSGW.

• OpenStack
• Supported for both object and block storage.

Integration with Cloud Stacks
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