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Overview of 
Parallel Computing Toolbox (PCT) 
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Parallel Resources: Local & Remote 

PCT MDCS 



www.cac.cornell.edu/RedCloud                      4 

PCT Opens Up Parallel Possibilities 

• MATLAB does multithreading implicitly in core array ops. 

• To exploit parallelism beyond this, a user needs to insert 
PCT commands. In order of increasing complexity: 

– Parallel for-loops: parfor 

– Single program, multiple data: spmd, pmode 

– Partitioned arrays for big-data parallelism: (co)distributed 
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PCT Opens Up Parallel Possibilities 

• MATLAB does multithreading implicitly in core array ops. 

• To exploit parallelism beyond this, a user needs to insert 
PCT commands. In order of increasing complexity: 

– Parallel for-loops: parfor 

– Single program, multiple data: spmd, pmode 

– Partitioned arrays for big-data parallelism: (co)distributed 

– Multiple batch-style runs of a serial function: createJob 

– Batch-style run of a parallel function: createParallelJob 
(= pmode), createMatlabPoolJob (if parfor/spmd sections) 
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Two Ways to Use PCT 

Set up matlabpool* – enter 
PCT commands at console 

Select local pool or remote  
cluster – submit task script 

MATLAB 
Client 

MATLAB 
Workers 

MATLAB 
Client 

 Interactively - vs. - batch-style 

MATLAB Workers 
(maybe via Distributed 

Computing Server) 

*or parpool in R2013b 

(Scheduler, 
file transfer) 
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Major PCT Concepts 

• matlabpool: pool of separate MATLAB processes = “labs” 

– Differs from multithreading! No shared address space 

– Ultimately allows same concepts to work on MDCS clusters 

• parfor: parallel for-loop, iterations must be independent  

– Labs (workers) split up work; load balancing is built in 

• spmd: single program, multiple data 

– All labs execute every command; labs can communicate 

• (co)distributed: array is partitioned among workers 

– “Multiple data” to spmd, one array to MATLAB built-ins 
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What If You Outgrow Your Laptop? 

• This is where MDCS comes in: switch to batch-style. 

• PCT’s interfaces allow a third party (e.g., CAC) to write 
implementations of PCT functions that talk to an MDCS 
cluster, but look the same to you as when run locally. 

• Select parallel resources by using a configuration/profile, 
or by issuing the findResource/parcluster command. 

– Choose “local” to stay local; choose “cacscheduler” to tie 
PCT methods to CAC-specific implementations 

– You don’t ever call the underlying functions directly 
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Using a Configuration/Profile 



www.cac.cornell.edu/RedCloud                      10 

findResource/parcluster 

• If you download the CAC client-side code, cacsched.m 
shows you how to call the findResource function. 

 

• Examine cac_initialize.m to see how the PCT interfaces 
are tied to to specific functions provided by CAC. 
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The Great Name Change in R2012a 
Previous Name New Name 

findResource parcluster 

scheduler object cluster object 

Configuration Profile 

createJob createJob (no change) 

createParallelJob createCommunicatingJob (where 'Type' = 'SPMD') 

createMatlabPoolJob createCommunicatingJob (where 'Type' = 'Pool') 

createTask createTask (no change) 

getAllOutputArguments fetchOutputs 

destroy delete 

…etc., etc… See www.mathworks.com/help/distcomp/release-notes.html 

http://www.mathworks.com/help/distcomp/release-notes.html
http://www.mathworks.com/help/distcomp/release-notes.html
http://www.mathworks.com/help/distcomp/release-notes.html


Using Batch-Style PCT 
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Jobs and Tasks 

• findResource creates a scheduler object, which allows 
you to create Jobs.  In PCT, Jobs are containers for Tasks, 
which are where the actual work is defined. 

sched 
Scheduler Object 

Jobs(24) Jobs(25) 

j=createJob(sched); 
j=createParallelJob(sched); 
j=createMatlabPoolJob(sched); 

Tasks(1) 
myFunction(z) 

Tasks(1) 
someFunction(x) 

Tasks(2) 
otherFunction(y) 

createTask(j,…); createTask(j,…); createTask(j,…); 



www.cac.cornell.edu/RedCloud                      14 

Distributed Jobs 

• PCT has 3 types of jobs: distributed, parallel, and pool. 

• Distributed jobs have one or more tasks and no 
communication between tasks. 

– An MDCS scheduler runs each task as a one-core batch job 

– Useful for shifting a series of lengthy tasks to CAC, e.g. 
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Parallel and Pool Jobs 

• Parallel and Pool jobs are multi-core or even multi-node. 

– Communication between cores/nodes must be possible. 

– The number of workers (labs) must be given. 

– These jobs have just one task! 
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Parallel Jobs 

• All workers (labs) run the task function. 

• The task function is responsible for implementing the 
actual parallelism using “labindex” logic. 

• PCT supports MPI-style commands inside parallel jobs. 

Size and rank are available 
from the start of the job. 
 

labindex = MPI_Comm_rank+1 
numlabs = MPI_Comm_size+1 
 

Initialization is done for you 
(no MPI_Init). 
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More on Parallel Jobs 

• All basic message-passing methods are available: Send, 
Receive, Broadcast, Barrier, gop (allreduce or allgather) 

• Source and tag are the same as in MPI. MATLAB figures 
out datatypes for you. 

– labSend(data,dest,[tag]);  

– labReceive(source,tag); 

– labReceive();  % take any 

• (Co)distributed arrays are sliced across workers so huge 
matrices can be operated on.   Collect slices with gather. 
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Pool Jobs 

• One worker acts as the proxy for your MATLAB client. 
This “master” runs the task function. 

• The rest of the workers act as the labs in a matlabpool. 
These labs run parfor/spmd sections of the task function. 
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State of Jobs 

• After a job is submitted, “job.state” is just one of several 
different ways to learn the state of the job. 

 

 

 

• waitForState is a PCT interface to block on job state, 
which can be problematic if jobs take a long time or fail. 

• If more control is desired, check job.state periodically to 
see if the job finished or failed. 
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Retrieving Results 

• Once your job completes, you need to get the results in 
two steps: (1) download files, (2) load into workspace. 

• Download is only needed for MDCS jobs. It is triggered 
automatically by checking on job.state for a completed 
job, or by a blocking call to waitForState(job). 

• Loading the results requires a separate function call 

– a = getAllOutputArguments(job) returns cell array 
a{Task,Output} 

– a{1,2} = Task 1, second output 
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Works the Same Everywhere! 

We can control which resource is 
used to execute the job simply by 
swapping out the scheduler object! 
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How to Do It Without PCT or MDCS 

• Create a MATLAB .m file that takes one or more input 
parameters (such as the name of an input file). 

• Apply the MATLAB C/C++ compiler (mcc), which converts 
the script to to C, then to a standalone executable. 

• Run N copies of the executable on an N-core machine or 
a cluster, each with a different input parameter 

– mpirun can launch non-MPI processes, too 

• Matlab runtimes (free!) must be available on all nodes 

• For process control, write a master script in Python, say 



Overview of MATLAB 
Distributed Computing Server 

(MDCS) and File Transfer 
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Connect to MDCS with ssh and sftp 
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When Is File Transfer Needed? 

• If you have a custom function and/or require a datafile: 

j = createJob(sched); 
createTask(j,@rand,1,{3,3}); 
createTask(j,@myfunction,1,{3,3}); 
submit(j); 
waitForState(j); 
a = getAllOutputArguments(j); 

• The rand function is no problem at all, it’s built in, but 
myfunction.m does not exist on the remote computer. 

• Transfer this file and get it added to the path. 
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MATLAB Can Copy the Files… 

• Setting the FileDependencies property tells MATLAB to 
copy the files for you. 

• Specify the directories and files the task will need. All 
files and directory structure will be copied. 

• Not very efficient, though: file transfer occurs separately 
for each worker running a task for that particular job. 

>> set(j,'FileDependencies',{'/home/username/src/myfunction.m',... 

'/home/username/data/dfile.mat'); 
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…Or Copy the Files Yourself 

• FileDependencies is best for smaller projects with only a 
couple of files. 

• Alternative for larger files: 

1.Copy the file(s) using sftp, or GridFTP 

2.Add the path to the worker sessions 

• PathDependencies is used to make the task function 
available at run time. 

>> set(j,'PathDependencies',{' \\matlabstorage01\matlab\username'}); 
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Remote File Storage at CAC 

• Subscriptions have 50GB of storage space 

– Intended for MATLAB scripts, job data, etc. 

– Accessible to all MATLAB jobs run by the same user 

– Can be expanded by adding extra storage to a subscription 

• General access is provided through GridFTP 

>> help gridFTP 
>> ftp = gridFTP(); 
>> ftp.list(''); 



Red Cloud 
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Two Ways to Use PCT 

Set up matlabpool* – enter 
PCT commands at console 

Select local pool or remote  
cluster – submit task script 

MATLAB 
Client 

MATLAB 
Workers 

MATLAB 
Client 

 Interactively - vs. - batch-style 

MATLAB Workers 
(maybe via Distributed 

Computing Server) 

*or parpool in R2013b 

(Scheduler, 
file transfer) 
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Two Ways to Use PCT at CAC 

Log in to an instance based 
on an image with MATLAB 

Select CAC as your remote  
cluster – submit task script 

MATLAB 
Client 

MATLAB 
Workers 

MATLAB 
Client 

 Red Cloud  Red Cloud with MATLAB 

MATLAB Workers 
on Red Cloud 
with MATLAB 

*or parpool in R2013b 

MyProxy, 
GridFTP 

Red Cloud 
instance 
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Two Ways to Use PCT at CAC 

Log in to an instance based 
on an image with MATLAB 

Select CAC as your remote  
cluster – submit task script 

MATLAB 
Client 

MATLAB 
Workers 

MATLAB 
Client 

*or parpool in R2013b 

Infrastructure as a Service   Software as a Service 

MyProxy, 
GridFTP 

MATLAB Workers 
on Red Cloud 
with MATLAB 

Red Cloud 
instance 
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Red Cloud with MATLAB 

• This “Software-as-a-Service” (SaaS) enables a broad 
research community to run MATLAB on CAC’s high-
performance resources in a secure, useable manner. 

• Both hardware and software components make up the 
system.  They integrate with the end user’s MATLAB 
client at different levels. 

• All functions are provided by various “services”, meaning 
you never actually log on to any CAC systems.  The client 
software simply makes requests to CAC systems. 
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Current System Specifications 

• Microsoft Windows HPC Server 2008 cluster  

– Supports MATLAB clients on Windows, Mac, and Linux 

– Releases R2010b, R2011a, R2011b, R2012a, and R2013a   

• 64 Intel cores in 8 Dell C6100 blade servers 

– Per server: 2 4-core Xeon E5620s @ 2.4 GHz  

– In Dell C410x: 8 NVIDIA Tesla M2070s, 1 Tflop/s, 6 GB each 

– 8 GPU-linked cores have 10GB RAM each; others have 2GB 

• 8TB DataDirect Networks storage: RAID-6, error correction  

– Accessible by all servers and externally at 10 Gb/s 
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Services and Security 

• File transfer service 

– Move files through a GridFTP (specialized FTP) server to a 
network file system that is mounted on all compute nodes 

• Job submission service 

– Submit and query jobs on the cluster (via TLS/SSL); jobs are 
executed by MATLAB workers on the compute nodes 

• Security and credentials 

– Send username/password over a TLS encrypted channel to 
MyProxy; get a short-lived X.509 certificate granting access 
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Hardware View 

MyProxy Server     GridFTP Server 

HPC 2008 
Head Node 

DataDirect 
Networks 

9900 Storage 

Windows 
Server 2008 

CAC 10GbE Interconnect 

1. Retrieve certificate 
2. Upload files to storage via GridFTP 
3. Submit job to run MATLAB workers on cluster 
4. Download files via GridFTP 
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Software View 

• File movement and job submission interactions are 
largely hidden by software integrated with MATLAB. 

• CAC’s client code for MATLAB is a mix of Java and M-files 
that enable access to the HPC cluster directly from your 
MATLAB client through the PCT “generic scheduler” 
interface. 

• Client code communicates as needed with server-side 
software at CAC to run distributed and parallel jobs on 
the HPC cluster’s 64 CPU cores and 8 GPUs. 
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JGlobus CoG 

Apache CXF Certificate 
Management MyProxy GridFTP 

SSL JSDL 

matlabpool 

parfor createJob submit 

getAllOutputArguments 
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A Note on the Platform 

• The compute nodes that run your MATLAB jobs are 
running Windows HPC 2008 (64 bit). 

– Your client need not be running on a Win64 platform. 

– Files requiring compilation might need to be recompiled 
on the HPC cluster; a utility is provided for mex files, e.g. 

– MATLAB is resilient to paths with the wrong direction of 
slashes, but the difference can cause problems. 

• C:\Users\naw47\myfiles\this.dat  Windows path 

• /home/naw47/myfiles/this.dat  Mac, Linux path 
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Support 

• A subscription comes with basic support to help you get 
started (contact help@cac.cornell.edu). 

– The basic rate allows CAC to recover hardware and 
software maintenance costs. 

• You have the option to add more extensive consulting 
support to your subscription. 

– Troubleshooting 

– Guidance on optimizing your application 

– General help with parallel MATLAB 

 



Case Study: 
GPGPU and MATLAB PCT 
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A Word About GPUs 

• Red Cloud with MATLAB features 8 nodes with dedicated 
NVDIA Tesla M2070 GPUs capable of 1 Tflop/s each! 

• MATLAB PCT has built-in GPU functions that provide an 
easy way to program the GPUs without learning CUDA 

 
Stop by after the lecture 
to see a demo of how to 
run a wave simulator on 
Red Cloud’s NVIDIA GPUs 
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• Initial benchmarking with large 1D and 2D FFTs shows 
excellent acceleration on 1 GPU vs. 8 CPU cores 

– Including communication: up to 10x speedup 

– Excluding communication: up to 20x speedup 

• MATLAB code changes are trivial 

– Move data to GPU by declaring a gpuArray 

– Methods are overloaded to use internal CUDA code on 
gpuArrays g = gpuArray(r); 

f = fft2(g); 

GPGPU in MATLAB: Fast and Easy 
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GPU Excels at Large FFTs 

• 2D FFT > 8 MB can be 9x faster on GPU (including data 
transfers), but array of 1D FFTs is equally fast on 8 cores 

• Limited to 256 MB due to bug in cuFFT 3.1; fixed in 3.2 
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Analysis of MRI Brain Scans 

• Work by Ashish Raj and Miloš Ivković, Weill-Cornell 
Medical College 

• Research question: Given two different regions of the 
human brain, how interconnected are they? 

• Potential impact of this technology: 

– Study of normal brain function 

– Understanding medical conditions that damage brain 
connections, such as multiple sclerosis, Alzheimer’s, TBI 

– Surgical planning 
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Connecting Two Types of MRI Data 

• 3D MRI scans to map the 
brain’s white matter 

• Fiber tracts to show lines 
of preferential diffusion 
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Need for Computational Power 

• Problem: long, 
spurious fibers 
arise in first-
pass analysis 

• Solution: use 
MATLAB to re-
weight fibers 
according to 
importance in 
connections 

Examples of improbable fibers eliminated by analysis 
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fibers 

voxels 

Connections in a Bipartite Graph 

• Ivković and Raj (2010) developed a message-passing 
optimization procedure to solve the weighting problem 

• Operates on a bipartite graph: nodes = fibers + voxels, 
edge weights = connection strength 

 

 

 

• MATLAB computations at each voxel are independent of 
all other voxels, likewise for fibers; inherently parallel 
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Data Product: Connectivity Matrix  

• Graph with 
360K nodes, 
1.8M edges, 
optimized in 
1K iterations 

• The reduced 
digraph at 
right is based 
on 116 regions 
of interest 
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Result: Better 3D Structure  

Analysis finds the most important connections between brain regions 
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Message-Passing Algorithm 

• Iterative procedure also known as “min-sum” 

• Fiber-centric step: for each fiber, find the minimum of all 
its edge weights; reset the edges to that value (or to the 
second smallest value, if already at min) 

 

 

 

• Voxel-centric step:  for each voxel, sum up its current 
edge weights; distribute WM value back proportionately 

 

 

fibers 

voxels 

1. MIN 2. SUM 
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Round One: Parallelization 

• Min/sum can be done independently for each fiber/voxel 

• Loops can be converted into parfor-loops 

– On 8 cores: 375 sec/iteration shrinks to 136 sec/iteration 

– After pre-packing the WM data structure to eliminate 
voxels not traversed by at least one fiber: 42 sec/iteration 

– After eliminating redundant searches via improvements to 
indexing, and removing parfor: 32 sec/iteration! 

• A better algorithm with good memory locality beats 
parallelization! 
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MATLAB Loves Matrices! 

• Original code was written using structs 

– Advantage: little wasted space; handles variable-length 
lists of edges connected to a voxel (1–274) or fiber (2–50) 

– Disadvantage: poor data locality, because structs hold lots 
of extraneous info about voxels/fibers 

– Disadvantage: unsupported on GPU in MATLAB 

• Better to store data in matrices! 

– Column-wise operations are often multithreaded 

– Matrix operations are often vectorized on CPUs or GPUs 
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Round Two: Vectorization 

• So, just throw everything into one giant matrix? 

– Problem #1: row-major ordering = bad stride 

– Problem #2: mixing of dissimilar data = poor data locality 

– Due to these problems, the initial matrix-based version of 
the serial min-sum algorithm ran slower, 53 sec/iteration 

• Initial optimization steps were easy… 

– Make columns receive all edge weights (messages) 

– Pull out only necessary info and store in separate, 
condensed matrices 
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Round Three: CPU Optimization 

• Tighten up memory utilization by grouping fibers and 
voxels according to numbers of coordinating edges 

– Different matrices for fibers that connect to 2, 3, 4… edges 

– Yields full columns in the matrix for all 2-edge fibers, etc. 

• Resulting code is much more complex 

– New inner for-loops over fiber count, voxel count 

– Challenge to construct the necessary indexing 

• Excellent performance in the end: 0.25 sec/iteration 

• Good outcome, but days and days of work 
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Round Four: GPU Optimization 

• Since R2011b, min and sum will work on gpuArrays! 

• Go back to big, simple matrices with top-heavy columns 

– Reason 1: GPU doesn’t deal well with nested for-loops 

– Reason 2: Want vectorized, SIMD ops on millions of items 

• Resulting code is actually less complex 

– Keep data in a few huge arrays 

• Best result (after a few tricks): 0.15 sec/iteration  

– 350x speedup over un-optimized, matrix-based version 

– 2500x speedup over initial struct-based version 
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Are GPUs Really That Simple? 

• No. Your application must meet four important criteria. 

1. Nearly all required operations must be implemented 
natively for type GPUArray. 

2. The computation must be arranged so the data seldom 
have to leave the GPU. 

3. The overall working dataset must be large enough to 
exploit 100s of thread processors 

4. The overall working dataset must be small enough that it 
does not exceed GPU memory. 
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PCT and MDCS: The Bottom Line 

• PCT can greatly speed up the analysis of large datasets 

• GPU functionality is a good addition to the arsenal 

• Yes, a learning curve must be climbed… 

– General knowledge of how to restructure code for parallel 
and vector computing 

– Specific knowledge of PCT functions 

• But speed matters!… 

– MRI image analysis, e.g., is transformed from a research 
curiosity into a diagnostic tool for real-time, clinical use 


