
Parallel MATLAB:
The Parallel Computing Toolbox,

MDCS, and Red Cloud

Steve Lantz

Senior Research Associate

Cornell Center for Advanced Computing

 Seminar for the Bioinformatics Practitioners Club, Nov. 3, 2014

Overview of
Parallel Computing Toolbox (PCT)

www.cac.cornell.edu/RedCloud 3

Parallel Resources: Local & Remote

PCT MDCS

www.cac.cornell.edu/RedCloud 4

PCT Opens Up Parallel Possibilities

• MATLAB does multithreading implicitly in core array ops.

• To exploit parallelism beyond this, a user needs to insert
PCT commands. In order of increasing complexity:

– Parallel for-loops: parfor

– Single program, multiple data: spmd, pmode

– Partitioned arrays for big-data parallelism: (co)distributed

www.cac.cornell.edu/RedCloud 5

PCT Opens Up Parallel Possibilities

• MATLAB does multithreading implicitly in core array ops.

• To exploit parallelism beyond this, a user needs to insert
PCT commands. In order of increasing complexity:

– Parallel for-loops: parfor

– Single program, multiple data: spmd, pmode

– Partitioned arrays for big-data parallelism: (co)distributed

– Multiple batch-style runs of a serial function: createJob

– Batch-style run of a parallel function: createParallelJob
(= pmode), createMatlabPoolJob (if parfor/spmd sections)

www.cac.cornell.edu/RedCloud 6

Two Ways to Use PCT

Set up matlabpool* – enter
PCT commands at console

Select local pool or remote
cluster – submit task script

MATLAB
Client

MATLAB
Workers

MATLAB
Client

 Interactively - vs. - batch-style

MATLAB Workers
(maybe via Distributed

Computing Server)

*or parpool in R2013b

(Scheduler,
file transfer)

www.cac.cornell.edu/RedCloud 7

Major PCT Concepts

• matlabpool: pool of separate MATLAB processes = “labs”

– Differs from multithreading! No shared address space

– Ultimately allows same concepts to work on MDCS clusters

• parfor: parallel for-loop, iterations must be independent

– Labs (workers) split up work; load balancing is built in

• spmd: single program, multiple data

– All labs execute every command; labs can communicate

• (co)distributed: array is partitioned among workers

– “Multiple data” to spmd, one array to MATLAB built-ins

www.cac.cornell.edu/RedCloud 8

What If You Outgrow Your Laptop?

• This is where MDCS comes in: switch to batch-style.

• PCT’s interfaces allow a third party (e.g., CAC) to write
implementations of PCT functions that talk to an MDCS
cluster, but look the same to you as when run locally.

• Select parallel resources by using a configuration/profile,
or by issuing the findResource/parcluster command.

– Choose “local” to stay local; choose “cacscheduler” to tie
PCT methods to CAC-specific implementations

– You don’t ever call the underlying functions directly

www.cac.cornell.edu/RedCloud 9

Using a Configuration/Profile

www.cac.cornell.edu/RedCloud 10

findResource/parcluster

• If you download the CAC client-side code, cacsched.m
shows you how to call the findResource function.

• Examine cac_initialize.m to see how the PCT interfaces
are tied to to specific functions provided by CAC.

www.cac.cornell.edu/RedCloud 11

The Great Name Change in R2012a
Previous Name New Name

findResource parcluster

scheduler object cluster object

Configuration Profile

createJob createJob (no change)

createParallelJob createCommunicatingJob (where 'Type' = 'SPMD')

createMatlabPoolJob createCommunicatingJob (where 'Type' = 'Pool')

createTask createTask (no change)

getAllOutputArguments fetchOutputs

destroy delete

…etc., etc… See www.mathworks.com/help/distcomp/release-notes.html

http://www.mathworks.com/help/distcomp/release-notes.html
http://www.mathworks.com/help/distcomp/release-notes.html
http://www.mathworks.com/help/distcomp/release-notes.html

Using Batch-Style PCT

www.cac.cornell.edu/RedCloud 13

Jobs and Tasks

• findResource creates a scheduler object, which allows
you to create Jobs. In PCT, Jobs are containers for Tasks,
which are where the actual work is defined.

sched
Scheduler Object

Jobs(24) Jobs(25)

j=createJob(sched);
j=createParallelJob(sched);
j=createMatlabPoolJob(sched);

Tasks(1)
myFunction(z)

Tasks(1)
someFunction(x)

Tasks(2)
otherFunction(y)

createTask(j,…); createTask(j,…); createTask(j,…);

www.cac.cornell.edu/RedCloud 14

Distributed Jobs

• PCT has 3 types of jobs: distributed, parallel, and pool.

• Distributed jobs have one or more tasks and no
communication between tasks.

– An MDCS scheduler runs each task as a one-core batch job

– Useful for shifting a series of lengthy tasks to CAC, e.g.

www.cac.cornell.edu/RedCloud 15

Parallel and Pool Jobs

• Parallel and Pool jobs are multi-core or even multi-node.

– Communication between cores/nodes must be possible.

– The number of workers (labs) must be given.

– These jobs have just one task!

www.cac.cornell.edu/RedCloud 16

Parallel Jobs

• All workers (labs) run the task function.

• The task function is responsible for implementing the
actual parallelism using “labindex” logic.

• PCT supports MPI-style commands inside parallel jobs.

Size and rank are available
from the start of the job.

labindex = MPI_Comm_rank+1
numlabs = MPI_Comm_size+1

Initialization is done for you
(no MPI_Init).

www.cac.cornell.edu/RedCloud 17

More on Parallel Jobs

• All basic message-passing methods are available: Send,
Receive, Broadcast, Barrier, gop (allreduce or allgather)

• Source and tag are the same as in MPI. MATLAB figures
out datatypes for you.

– labSend(data,dest,[tag]);

– labReceive(source,tag);

– labReceive(); % take any

• (Co)distributed arrays are sliced across workers so huge
matrices can be operated on. Collect slices with gather.

www.cac.cornell.edu/RedCloud 18

Pool Jobs

• One worker acts as the proxy for your MATLAB client.
This “master” runs the task function.

• The rest of the workers act as the labs in a matlabpool.
These labs run parfor/spmd sections of the task function.

www.cac.cornell.edu/RedCloud 19

State of Jobs

• After a job is submitted, “job.state” is just one of several
different ways to learn the state of the job.

• waitForState is a PCT interface to block on job state,
which can be problematic if jobs take a long time or fail.

• If more control is desired, check job.state periodically to
see if the job finished or failed.

www.cac.cornell.edu/RedCloud 20

Retrieving Results

• Once your job completes, you need to get the results in
two steps: (1) download files, (2) load into workspace.

• Download is only needed for MDCS jobs. It is triggered
automatically by checking on job.state for a completed
job, or by a blocking call to waitForState(job).

• Loading the results requires a separate function call

– a = getAllOutputArguments(job) returns cell array
a{Task,Output}

– a{1,2} = Task 1, second output

www.cac.cornell.edu/RedCloud 21

Works the Same Everywhere!

We can control which resource is
used to execute the job simply by
swapping out the scheduler object!

www.cac.cornell.edu/RedCloud 22

How to Do It Without PCT or MDCS

• Create a MATLAB .m file that takes one or more input
parameters (such as the name of an input file).

• Apply the MATLAB C/C++ compiler (mcc), which converts
the script to to C, then to a standalone executable.

• Run N copies of the executable on an N-core machine or
a cluster, each with a different input parameter

– mpirun can launch non-MPI processes, too

• Matlab runtimes (free!) must be available on all nodes

• For process control, write a master script in Python, say

Overview of MATLAB
Distributed Computing Server

(MDCS) and File Transfer

www.cac.cornell.edu/RedCloud 24

Connect to MDCS with ssh and sftp

www.cac.cornell.edu/RedCloud 25

When Is File Transfer Needed?

• If you have a custom function and/or require a datafile:

j = createJob(sched);
createTask(j,@rand,1,{3,3});
createTask(j,@myfunction,1,{3,3});
submit(j);
waitForState(j);
a = getAllOutputArguments(j);

• The rand function is no problem at all, it’s built in, but
myfunction.m does not exist on the remote computer.

• Transfer this file and get it added to the path.

www.cac.cornell.edu/RedCloud 26

MATLAB Can Copy the Files…

• Setting the FileDependencies property tells MATLAB to
copy the files for you.

• Specify the directories and files the task will need. All
files and directory structure will be copied.

• Not very efficient, though: file transfer occurs separately
for each worker running a task for that particular job.

>> set(j,'FileDependencies',{'/home/username/src/myfunction.m',...

'/home/username/data/dfile.mat');

www.cac.cornell.edu/RedCloud 27

…Or Copy the Files Yourself

• FileDependencies is best for smaller projects with only a
couple of files.

• Alternative for larger files:

1.Copy the file(s) using sftp, or GridFTP

2.Add the path to the worker sessions

• PathDependencies is used to make the task function
available at run time.

>> set(j,'PathDependencies',{' \\matlabstorage01\matlab\username'});

www.cac.cornell.edu/RedCloud 28

Remote File Storage at CAC

• Subscriptions have 50GB of storage space

– Intended for MATLAB scripts, job data, etc.

– Accessible to all MATLAB jobs run by the same user

– Can be expanded by adding extra storage to a subscription

• General access is provided through GridFTP

>> help gridFTP
>> ftp = gridFTP();
>> ftp.list('');

Red Cloud

www.cac.cornell.edu/RedCloud 30

Two Ways to Use PCT

Set up matlabpool* – enter
PCT commands at console

Select local pool or remote
cluster – submit task script

MATLAB
Client

MATLAB
Workers

MATLAB
Client

 Interactively - vs. - batch-style

MATLAB Workers
(maybe via Distributed

Computing Server)

*or parpool in R2013b

(Scheduler,
file transfer)

www.cac.cornell.edu/RedCloud 31

Two Ways to Use PCT at CAC

Log in to an instance based
on an image with MATLAB

Select CAC as your remote
cluster – submit task script

MATLAB
Client

MATLAB
Workers

MATLAB
Client

 Red Cloud Red Cloud with MATLAB

MATLAB Workers
on Red Cloud
with MATLAB

*or parpool in R2013b

MyProxy,
GridFTP

Red Cloud
instance

www.cac.cornell.edu/RedCloud 32

Two Ways to Use PCT at CAC

Log in to an instance based
on an image with MATLAB

Select CAC as your remote
cluster – submit task script

MATLAB
Client

MATLAB
Workers

MATLAB
Client

*or parpool in R2013b

Infrastructure as a Service Software as a Service

MyProxy,
GridFTP

MATLAB Workers
on Red Cloud
with MATLAB

Red Cloud
instance

www.cac.cornell.edu/RedCloud 33

Red Cloud with MATLAB

• This “Software-as-a-Service” (SaaS) enables a broad
research community to run MATLAB on CAC’s high-
performance resources in a secure, useable manner.

• Both hardware and software components make up the
system. They integrate with the end user’s MATLAB
client at different levels.

• All functions are provided by various “services”, meaning
you never actually log on to any CAC systems. The client
software simply makes requests to CAC systems.

www.cac.cornell.edu/RedCloud 34

Current System Specifications

• Microsoft Windows HPC Server 2008 cluster

– Supports MATLAB clients on Windows, Mac, and Linux

– Releases R2010b, R2011a, R2011b, R2012a, and R2013a

• 64 Intel cores in 8 Dell C6100 blade servers

– Per server: 2 4-core Xeon E5620s @ 2.4 GHz

– In Dell C410x: 8 NVIDIA Tesla M2070s, 1 Tflop/s, 6 GB each

– 8 GPU-linked cores have 10GB RAM each; others have 2GB

• 8TB DataDirect Networks storage: RAID-6, error correction

– Accessible by all servers and externally at 10 Gb/s

www.cac.cornell.edu/RedCloud 35

Services and Security

• File transfer service

– Move files through a GridFTP (specialized FTP) server to a
network file system that is mounted on all compute nodes

• Job submission service

– Submit and query jobs on the cluster (via TLS/SSL); jobs are
executed by MATLAB workers on the compute nodes

• Security and credentials

– Send username/password over a TLS encrypted channel to
MyProxy; get a short-lived X.509 certificate granting access

www.cac.cornell.edu/RedCloud 36

Hardware View

MyProxy Server GridFTP Server

HPC 2008
Head Node

DataDirect
Networks

9900 Storage

Windows
Server 2008

CAC 10GbE Interconnect

1. Retrieve certificate
2. Upload files to storage via GridFTP
3. Submit job to run MATLAB workers on cluster
4. Download files via GridFTP

www.cac.cornell.edu/RedCloud 37

Software View

• File movement and job submission interactions are
largely hidden by software integrated with MATLAB.

• CAC’s client code for MATLAB is a mix of Java and M-files
that enable access to the HPC cluster directly from your
MATLAB client through the PCT “generic scheduler”
interface.

• Client code communicates as needed with server-side
software at CAC to run distributed and parallel jobs on
the HPC cluster’s 64 CPU cores and 8 GPUs.

 38

JGlobus CoG

Apache CXF Certificate
Management MyProxy GridFTP

SSL JSDL

matlabpool

parfor createJob submit

getAllOutputArguments

www.cac.cornell.edu/RedCloud 39

A Note on the Platform

• The compute nodes that run your MATLAB jobs are
running Windows HPC 2008 (64 bit).

– Your client need not be running on a Win64 platform.

– Files requiring compilation might need to be recompiled
on the HPC cluster; a utility is provided for mex files, e.g.

– MATLAB is resilient to paths with the wrong direction of
slashes, but the difference can cause problems.

• C:\Users\naw47\myfiles\this.dat Windows path

• /home/naw47/myfiles/this.dat Mac, Linux path

www.cac.cornell.edu/RedCloud 40

Support

• A subscription comes with basic support to help you get
started (contact help@cac.cornell.edu).

– The basic rate allows CAC to recover hardware and
software maintenance costs.

• You have the option to add more extensive consulting
support to your subscription.

– Troubleshooting

– Guidance on optimizing your application

– General help with parallel MATLAB

Case Study:
GPGPU and MATLAB PCT

www.cac.cornell.edu/RedCloud 42

A Word About GPUs

• Red Cloud with MATLAB features 8 nodes with dedicated
NVDIA Tesla M2070 GPUs capable of 1 Tflop/s each!

• MATLAB PCT has built-in GPU functions that provide an
easy way to program the GPUs without learning CUDA

Stop by after the lecture
to see a demo of how to
run a wave simulator on
Red Cloud’s NVIDIA GPUs

www.cac.cornell.edu/RedCloud 43

• Initial benchmarking with large 1D and 2D FFTs shows
excellent acceleration on 1 GPU vs. 8 CPU cores

– Including communication: up to 10x speedup

– Excluding communication: up to 20x speedup

• MATLAB code changes are trivial

– Move data to GPU by declaring a gpuArray

– Methods are overloaded to use internal CUDA code on
gpuArrays g = gpuArray(r);

f = fft2(g);

GPGPU in MATLAB: Fast and Easy

www.cac.cornell.edu/RedCloud 44

GPU Excels at Large FFTs

• 2D FFT > 8 MB can be 9x faster on GPU (including data
transfers), but array of 1D FFTs is equally fast on 8 cores

• Limited to 256 MB due to bug in cuFFT 3.1; fixed in 3.2

www.cac.cornell.edu/RedCloud 45

Analysis of MRI Brain Scans

• Work by Ashish Raj and Miloš Ivković, Weill-Cornell
Medical College

• Research question: Given two different regions of the
human brain, how interconnected are they?

• Potential impact of this technology:

– Study of normal brain function

– Understanding medical conditions that damage brain
connections, such as multiple sclerosis, Alzheimer’s, TBI

– Surgical planning

www.cac.cornell.edu/RedCloud 46

Connecting Two Types of MRI Data

• 3D MRI scans to map the
brain’s white matter

• Fiber tracts to show lines
of preferential diffusion

www.cac.cornell.edu/RedCloud 47

Need for Computational Power

• Problem: long,
spurious fibers
arise in first-
pass analysis

• Solution: use
MATLAB to re-
weight fibers
according to
importance in
connections

Examples of improbable fibers eliminated by analysis

www.cac.cornell.edu/RedCloud 48

fibers

voxels

Connections in a Bipartite Graph

• Ivković and Raj (2010) developed a message-passing
optimization procedure to solve the weighting problem

• Operates on a bipartite graph: nodes = fibers + voxels,
edge weights = connection strength

• MATLAB computations at each voxel are independent of
all other voxels, likewise for fibers; inherently parallel

www.cac.cornell.edu/RedCloud 49

Data Product: Connectivity Matrix

• Graph with
360K nodes,
1.8M edges,
optimized in
1K iterations

• The reduced
digraph at
right is based
on 116 regions
of interest

www.cac.cornell.edu/RedCloud 50

Result: Better 3D Structure

Analysis finds the most important connections between brain regions

www.cac.cornell.edu/RedCloud 51

Message-Passing Algorithm

• Iterative procedure also known as “min-sum”

• Fiber-centric step: for each fiber, find the minimum of all
its edge weights; reset the edges to that value (or to the
second smallest value, if already at min)

• Voxel-centric step: for each voxel, sum up its current
edge weights; distribute WM value back proportionately

fibers

voxels

1. MIN 2. SUM

www.cac.cornell.edu/RedCloud 52

Round One: Parallelization

• Min/sum can be done independently for each fiber/voxel

• Loops can be converted into parfor-loops

– On 8 cores: 375 sec/iteration shrinks to 136 sec/iteration

– After pre-packing the WM data structure to eliminate
voxels not traversed by at least one fiber: 42 sec/iteration

– After eliminating redundant searches via improvements to
indexing, and removing parfor: 32 sec/iteration!

• A better algorithm with good memory locality beats
parallelization!

www.cac.cornell.edu/RedCloud 53

MATLAB Loves Matrices!

• Original code was written using structs

– Advantage: little wasted space; handles variable-length
lists of edges connected to a voxel (1–274) or fiber (2–50)

– Disadvantage: poor data locality, because structs hold lots
of extraneous info about voxels/fibers

– Disadvantage: unsupported on GPU in MATLAB

• Better to store data in matrices!

– Column-wise operations are often multithreaded

– Matrix operations are often vectorized on CPUs or GPUs

www.cac.cornell.edu/RedCloud 54

Round Two: Vectorization

• So, just throw everything into one giant matrix?

– Problem #1: row-major ordering = bad stride

– Problem #2: mixing of dissimilar data = poor data locality

– Due to these problems, the initial matrix-based version of
the serial min-sum algorithm ran slower, 53 sec/iteration

• Initial optimization steps were easy…

– Make columns receive all edge weights (messages)

– Pull out only necessary info and store in separate,
condensed matrices

www.cac.cornell.edu/RedCloud 55

Round Three: CPU Optimization

• Tighten up memory utilization by grouping fibers and
voxels according to numbers of coordinating edges

– Different matrices for fibers that connect to 2, 3, 4… edges

– Yields full columns in the matrix for all 2-edge fibers, etc.

• Resulting code is much more complex

– New inner for-loops over fiber count, voxel count

– Challenge to construct the necessary indexing

• Excellent performance in the end: 0.25 sec/iteration

• Good outcome, but days and days of work

www.cac.cornell.edu/RedCloud 56

Round Four: GPU Optimization

• Since R2011b, min and sum will work on gpuArrays!

• Go back to big, simple matrices with top-heavy columns

– Reason 1: GPU doesn’t deal well with nested for-loops

– Reason 2: Want vectorized, SIMD ops on millions of items

• Resulting code is actually less complex

– Keep data in a few huge arrays

• Best result (after a few tricks): 0.15 sec/iteration

– 350x speedup over un-optimized, matrix-based version

– 2500x speedup over initial struct-based version

www.cac.cornell.edu/RedCloud 57

Are GPUs Really That Simple?

• No. Your application must meet four important criteria.

1. Nearly all required operations must be implemented
natively for type GPUArray.

2. The computation must be arranged so the data seldom
have to leave the GPU.

3. The overall working dataset must be large enough to
exploit 100s of thread processors

4. The overall working dataset must be small enough that it
does not exceed GPU memory.

www.cac.cornell.edu/RedCloud 58

PCT and MDCS: The Bottom Line

• PCT can greatly speed up the analysis of large datasets

• GPU functionality is a good addition to the arsenal

• Yes, a learning curve must be climbed…

– General knowledge of how to restructure code for parallel
and vector computing

– Specific knowledge of PCT functions

• But speed matters!…

– MRI image analysis, e.g., is transformed from a research
curiosity into a diagnostic tool for real-time, clinical use

