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Longhorn Visualization and Data 

Analysis  

• In November 2008, NSF accepted proposals for 

the Extreme Digital Resources for Science and 

Engineering 

• The Longhorn project was proposed as a next 

generation response to TeraGrid’s growing 

visualization and data analysis needs 



Spur - Visualization System 

• 128 cores, 1 TB distributed 

memory, 32 GPUs 

• spur.tacc.utexas.edu 

login node, no GPUs 

don’t run apps here! 

• ivisbig.ranger  

Sun Fire X4600 server  
– 8 AMD Opteron dual-core  

CPUs @ 3 GHz 

– 256 GB memory 

– 4 NVIDIA FX5600 GPUs  

• ivis[1-7].ranger 

Sun Fire X4440 server 
– 4 AMD Opteron quad-core  

CPUs @  2.3 GHz 

– 128 GB memory 

– 4 NVIDIA FX5600 GPUs  



Spur / Ranger topology 

spur 

login3.ranger 

Login Nodes 

login4.ranger 

Compute Nodes 

Vis nodes 
ivis[1-7|big] 

HPC nodes 
ixxx-xxx 

vis 

queue 

normal 

development 

<etc> 

queues 

File System 

$HOME 

$WORK 

$SCRATCH 



Connecting to Spur 
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qsub /share/sge/default/pe_scripts/job.vnc 

touch ~/vncserver.out 

tail –f ~/vncserver.out 
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spur 
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automatic 
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to vis node 
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to spur vnc port 

localhost connection forwarded  
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info after job launches 



Spur Usage 



XD Vis Requirements Analysis  

• Surveyed members of the science community 

via personal interviews and email surveys 

• Received ~60 individual responses 

MPS, 
44%

CISE, 
6%

BBS, 
24%

GEO, 8%

ENG, 
18%

NSF Fields of Science Represented



XD Vis Requirements Analysis  
Requirement % Users Requested 

User Support and Consulting 96% 

Large-Scale DAV Tools/Resources 39% 

Remote/Collaborative DAV Services 27% 

Computational Steering 10% 

In-simulation DAV Tools 6% 

Tools for 3D Measurement and Query 6% 

Tools for Multiple Length and Time 

Scales 

6% 

(DAV = Data Analysis/Visualization) 



Longhorn Configuration 
(256 Nodes, 2048 Cores, 512 GPUs, 14.5 TG Aggregate Memory) 

• 256 Dell Quad Core Intel Nehalem Nodes 

– 240 Nodes 

• Dual socket, quad core per socket: 8 cores/node 

• 48 GB shared memory/node (6 GB/core) 

• 73 GB Local Disk 

• 2 Nvidia GPUs/node (FX 5800 - 4GB RAM) 

– 16 Nodes 

• Dual socket, quad core per socket: 8 cores/node 

• 144 GB shared memory/node (18 GB/core) 

• 73 GB Local Disk 

• 2 Nvidia GPUs/node (FX 5800 – 4GB RAM) 

– ~14.5 TB aggregate memory 

• QDR InfiniBand Interconnect 

• Direct Connection to Ranger’s Lustre Parallel File System 

• 10G Connection to 210 TB Local Lustre Parallel File System 

• Jobs launched through SGE 



Longhorn’s Lustre File System ($SCRATCH) 

• OSS’s on Longhorn are built on Dell Nehalem Servers Connected to 
MD10000 Storage Vaults 

• 15 Drives Total Configured into 2 Raid5 pairs with a Wandering Spare 

• Peak Throughput Speed of the File System is 5.86 GB/sec 

• Peak Aggregate Speed of the File System is 5.43 GB/sec 



Longhorn Partners and Roles: 

• TACC (Kelly Gaither – PI)  
– Longhorn machine deployment 

– User support  

– Visualization and Data Analysis portal development 

– Software/Tool development 

• NCAR (John Clyne – CoPI) 
– User support 

– VAPOR Enhancements 

• University of Utah (Valerio Pascucci – CoPI, 
Chuck Hansen) 
– User support 

– Software Integration of RTRT and topological analysis 

 



Longhorn Partners and Roles: 

• Purdue University (David Ebert – CoPI) 
– User support 

– Integration of visual analytics software 

• UC Davis (Hank Childs – Chief Software 
Integration Architect) 
– Directly facilitate tools being integrated into the VisIt 

software suite 

• SURA (Linda Akli – MSI Outreach/Broadening 
Participation) 

 



Longhorn Usage Modalities: 

• Remote/Interactive Visualization 
– Highest priority jobs  

– Remote/Interactive capabilities facilitated through VNC 

– Run on 4 hour time limit 

• GPGPU jobs 
– Run on a lower priority than the remote/interactive jobs 

– Run on 12 hour time limit 

• CPU jobs with higher memory requirements 
– Run on lowest priority when neither remote/interactive nor GPGPU 

jobs are waiting in the queue 

– Run 12 hour time limit 



Longhorn User Portal 



Longhorn Queue Structure 

qsub -q normal -P vis 



Longhorn Usage 



Longhorn Usage 



Longhorn Usage 



Longhorn Usage 
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Production 

Field of Science Last 30 

Days 

Field of Science Last 7  

Days 



Sampling of Current Projects 

• Computational Study of Earth and Planetary Materials 

• Simulation of Quantum Systems 

• Visualization and Analysis of Turbulent Flow 

• A probabilistic Molecular Dynamics Optimized for the 

GPU 

• Visualization of Nano-Microscopy 

• MURI on Biologically-Inspired Autonomous Sea 

Vehicles: Towards a Mission Configurable Stealth 

Underwater Batoid 

• Adaptive Multiscale Simulations 



Scientific Visualization 

“The purpose of computing is insight not numbers.” 

-- R. W. Hamming (1961) 









Visualization Allows Us to “See” the Science 

Application Render 

Geometric Primitives Pixels Raw Data 
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Getting from Data to Insight  
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“I, We, They” Development Path 

Simulation 

Data 

“I” 

 

Data Exploration 
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Communication 
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Visualization Process Summary 

• The primary goal of visualization is insight 

• A picture is worth not just 1000 words, 

but potentially tera- or peta-bytes of data 

• Larger datasets demand not just visualization, but 

advanced visualization resources and techniques 

• Visualization system technology improves with 

advances in GPUs and LCD technology 

• Visualization software slower to adapt 

 



Types of Input Data 

• Point / Particle 
– N-body simulation 

• Regular grid 
– Medical scan 

• Curvilinear grid 
– Engineering model 

• Unstructured grid 
– Extracted surface 



 Point – scattered values with no defined structure 

Types of Input Data 



 Grid – regular structure, all voxels (cells) 
     are the same size and shape 

Types of Input Data 



 Curvilinear – regularly grided mesh 
     shaping function applied 

Types of Input Data 



 Unstructured grid – irregular mesh typically 
composed of tetrahedra, prisms, pyramids, 
or hexahedra. 

Types of Input Data 



Visualization Operations 

• Surface Shading (Pseudocolor) 

 

• Isosufacing (Contours) 

 

• Volume Rendering 

 

• Clipping Planes 

 

• Streamlines 



Surface Shading (Pseudocolor) 

Given a scalar value at a point 

on the surface and a color map,  

find the corresponding color 

(and opacity) and apply it to the 

surface point. 

 

Most common operation, often 

combined with other ops 

 
 

 



Isosurfaces (Contours) 

Plot the surface for a 

given scalar value. 

 

Good for showing known 

values of interest 

 

Good for sampling 

through a data range 

 

 



Volume Rendering 

Expresses how light travels through a volume 

Color and opacity controlled by transfer function 

Smoother transitions than isosurfaces 

 



Clipping / Slicing Planes 

Extract a plane from the data to show features 

Hide part of dataset to expose features 

 



Particle Traces (Streamlines) 

Given a vector field, 

extract a trace that 

follows that 

trajectory defined 

by the vector. 

 

Pnew = Pcurrent + VPDt 

 

Streamlines – trace in space 

Pathlines – trace in time 



Visualization Resources 

• Personal machines 
– Most accessible, least powerful 

• Projection systems 
– Seamless image, high purchase and maintenance costs 

• Tiled-LCD displays 
– Lowest per-pixel costs, bezels divide image 

• Remote visualization 
– Access to high-performance system,  

latency can affect user experience 



Visualization Challenges 



Visualization Allows Us to “See” the Science 
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But what about large, distributed data? 
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Or distributed rendering? 
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Or distributed displays? 
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Or all three? 
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Visualization Scaling Challenges 

• Moving data to the visualization machine 

• Most applications built for shared memory 

machines, not distributed clusters 

• Image resolution limits in some software 

cannot capture feature details 

• Displays cannot show entire high-resolution 

images at their native resolution 



Visualization scales with HPC 

 Large data produced by large simulations 

require large visualization machines and 

produce large visualization results 

 

Terabytes of  

Data 

AT LEAST 

Terabytes of 

Vis 

Gigapixel 

Images 

Resampling, 

Application, 

… 

Resolution to 

Capture 

Feature Detail 



Moving Data 

• How much time do you have? 

File Size 10 Gbps 54 Mbps  

1 GB 1 sec 2.5 min 

1 TB ~17 min ~43 hours 

1 PB ~12 days ~5 years 



Analyzing Data 

• Visualization programs only beginning to 

efficiently handle ultrascale data 

– 650 GB dataset -> 3 TB memory footprint 

– Allocate HPC nodes for RAM not cores 

– N-1 idle processors per node! 

• Stability across many distributed nodes 

– Rendering clusters typically number N <= 64 

– Data must be dividable onto N cores  

Remember this when resampling! 



Solution by Partial Sums 

• Moving data –  integrate vis machine into simulation 

         machine.  Move the machine to data! 

– Ranger + Spur: shared file system and interconnect 

 

• Analyzing data – create larger vis machines and  

            develop more efficient vis apps 

– Smaller memory footprint 

– More stable across many distributed nodes 

 

Until then, the simulation machine is the vis machine! 

 



Solution by Partial Sums 

• Imaging data – focus vis effort on interesting features 

         parallelize image creation 

– Feature detection to determine visualization targets 

but can miss “unknown unknowns” 

– Distribute image rendering across cluster 

 

• Displaying data – high resolution displays 

   multi-resolution image navigation 

– Large displays need large spaces 

– Physical navigation of display provides better insights 

 



Old Model  

(No Remote Capability) 
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New Model 
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Parallel Visualization 

– Task parallelism – passing results to 1 process for 

rendering 

1 2 3 4 5 

1 Read file 1 Isosurface 1 Cut Plane 1 

2 Read file 2 Streamlines 2 Render 

3 Read file 3 Triangulate 3 Decimate 3 Glyph 3 

Timesteps 

P
ro

c
e
s
s
e
s
 



Parallel Visualization 

Pipeline parallelism 
 Useful when processes have access to separate resources or 

when an operation requires many steps. 

1 2 3 4 5 

1 Read file 1 Read file 2 Read File 3 

2 Isosurface 1 Isosurface 2 Isosurface 3 

3 Render 1 Render 2 Render 3 

Timesteps 

P
ro

c
e
s
s
e
s
 



Parallel Visualization 
Data parallelism 

Data set is partitioned among the processes and all processes 

execute same operations on the data.  

Scales well as long as the data and operations can be decomposed. 

1 2 3 
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partition 1 

Render 

partition 1 

2 Read 
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partition 2 
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Parallel Visualization Libraries 

• Chromium – http://chromium.sourceforge.net  

– Sits between application and native OpenGL 

– Intercepts OpenGL calls, distribute across cluster 

– Can do either sort-first or sort-last  

(sort-first is simpler, sort-last can be better for large data) 

– Last update 31 Aug 2006, no new GL goodies 

• IceT – http://www.cs.unm.edu/~kmorel/IceT/  

SAGE – http://www.evl.uic.edu/cavern/sage/  

CGLX – http://vis.ucsd.edu/~cglx/  

– specifically for large tiled displays 

– Must use IceT / SAGE / CGLX API in code 

• Mesa – http://www.mesa3d.org/  

– Software rendering library 

– Enables OpenGL rendering on machines without GPUs 

http://chromium.sourceforge.net/
http://www.cs.unm.edu/~kmorel/IceT/
http://www.evl.uic.edu/cavern/sage/
http://vis.ucsd.edu/~cglx/
http://www.mesa3d.org/


Open-Source Parallel Vis Apps 

• VisIt – https://wci.llnl.gov/codes/visit/  

– Good scaling to hundreds of cores 

– Integrated job launching mechanism for rendering engines 

– Good documentation and user community 

– GUI not as polished 

• ParaView – http://www.paraview.org/ 

– Polished GUI, easier to navigate 

– Less stable across hundreds of cores 

– Official documentation must be purchased,  

though rich knowledge base on web (via Google) 

https://wci.llnl.gov/codes/visit/
http://www.evl.uic.edu/cavern/sage/


CUDA – coding for GPUs 

• C / C++ interface plus 

GPU-based extensions 

• Can use both for 

accelerating 

visualization operations 

and for general-purpose 

computing (GPGPU) 

• Special GPU libraries 

for math, FFT, BLAS 
Image: Tom Halfhill, Microprocessor Report 



GPU layout 

Image: Tom Halfhill, Microprocessor Report 



GPU Considerations 

• Parallelism – kernel should be highly SIMD 

– Switching kernels is expensive! 

• Job size – high workload per thread 

– amortize thread initialization and memory transfer costs 

• Memory footprint – task must decompose well 

– local store per GPU core is low (16 KB on G80) 

– card-local RAM is limited (~1GB on G8x) 

– access to system RAM is slow (treat like disk access) 

• GPU N-body study (in GPU Gems 3): 

http://www.nvidia.com/object/io_1195170003876.html  

http://www.nvidia.com/object/io_1195170003876.html


Summary 

• Challenges at every stage 

of visualization when 

operating on large data 

• Partial solutions exist, 

though not integrated 

• Problem sizes continue to 

grow at every stage 

• Vis software community 

must keep pace with 

hardware innovations 



Thank you! 

 

kelly@tacc.utexas.edu 


