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Putting Performance into Design and Development

…this talk is about principles and 
practices during the later stages 
of development that lead to better 
performance on a per-core basis
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What Matters Most in Per-Core Performance

Good memory locality!
• Code accesses contiguous memory addresses

– Reason: Data always arrive in cache lines which include neighbors
– Reason: Loops become vectorizable via SSE (explained in a moment)

• Code emphasizes cache reuse
– Reason: When operations on a given data item are collected together, 

the item remains in cache, where access is much faster than RAM
• Data are aligned on doubleword boundaries

– Reason: More efficient to have data items not straddling cache lines
Goal: make your data stay in cache as long as possible, so that 

deeper levels of the memory hierarchy are accessed infrequently
• This is even more important for GPUs than it is for CPUs



Understanding The Memory Hierarchy
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Functional Units

L1 Cache

Registers

Local Memory

L2 Cache

L2 Cache   1 MB

Memory     1 GB

L1 Cache 16/32 KB

Relative Memory Sizes

L3 Cache Off Die

~25 GB/s

~50 GB/s

Relative Memory Bandwidths

~12 GB/s

~8 GB/s

Processor

~5 CP

Latency

~15 CP

~300 CP



What’s the Target Architecture?

• AMD initiated the x86-64 or x64 instruction set
– Extends Intel’s 32-bit x86 instruction set to handle 64-bit addressing
– Encompasses both AMD64 and EM64T = “Intel 64”
– Differs from IA-64 (now called “Intel Itanium Architecture”)

• Additional SSE instructions access special registers & operations
– 128-bit registers can hold 4 floats/ints or 2 doubles simultaneously
– Within an SSE register, “vector” operations can be applied
– Operations are also pipelined (e.g., load > multiply > add > store)
– Therefore, multiple results can be produced every clock cycle
– New with “Sandy Bridge”: Advanced Vector Extensions (AVX), Intel’s 

latest add-ons to the x64 instruction set for 256-bit registers
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Understanding SSE, SIMD, and Micro-Parallelism
• For “vectorizable” loops with independent iterations, SSE 

instructions can be employed…

SSE = Streaming SIMD 
Extensions

SIMD = Single Instruction, 
Multiple Data

Instructions operate on multiple 
arguments simultaneously, in 
parallel Execution Units 
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Putting Performance into Development: Libraries

…this talk is about principles and 
practices during the later stages 
of development that lead to better 
performance on a per-core basis
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Performance Libraries
• Optimized for specific architectures (chip + platform + system)
• Offered by different vendors

– Intel Math Kernel Library (MKL)
– AMD Core Math Library (ACML)
– ESSL/PESSL on IBM systems
– Cray libsci for Cray systems
– SCSL for SGI systems

• Usually far superior to hand-coded routines for “hot spots”
– Writing your own library routines by hand is not merely re-inventing the 

wheel; it’s more like re-inventing the muscle car
– Numerical Recipes books are NOT a source of optimized code: 

performance libraries can run 100x faster
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HPC Software on Ranger, from Apps to Libs
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TAU
PAPI
…

AMBER
NAMD
GROMACS 

GAMESS
NWChem
…

MKL
ACML
GSL
GotoBLAS
GotoBLAS2

FFTW(2/3)
…

PETSc

PLAPACK
ScaLAPACK
SLEPc

METIS
ParMETIS

SPRNG
…

NetCDF
HDF5
PHDF5
…

Applications Parallel Libs Math Libs Input/Output Diagnostics



Intel MKL 10.0 (Math Kernel Library)
• Is optimized for the IA-32, Intel 64, Intel Itanium architectures
• Supports Fortran and C interfaces
• Includes functions in the following areas:

– Basic Linear Algebra Subroutines, for BLAS levels 1-3 (e.g., Ax+y)
– LAPACK, for linear solvers and eigensystems analysis
– FFT routines
– Transcendental functions
– Vector Math Library (VML), for vectorized transcendentals
– …others
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Using Intel MKL on Ranger
• Enable MKL

– module load mkl
– module help mkl

• Compile and link for C/C++

mpicc -I$TACC_MKL_INC mkl_test.c -L$TACC_MKL_LIB -lmkl_em64t

• Compile and link for Fortran

mpif90 mkl_test.f90 -L$TACC_MKL_LIB -lmkl_em64t
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GotoBLAS and FFTW

GotoBLAS
• Hand-optimized BLAS, minimizes TLB misses 
• Only testing will tell what kind of advantage your code gets

FFTW, the Fastest Fourier Transform in the West
• Cooley-Tukey
• Prime Factor algorithm, most efficient with small prime factors like 

(2, 3, 5, and 7)
• Automatic performance adaptation 

12/7/2010 www.cac.cornell.edu 12



GSL, the GNU Scientific Library

• Special Functions
• Vectors and Matrices
• Permutations
• Sorting
• Linear Algebra/BLAS Support
• Eigensystems
• Fast Fourier Transforms
• Quadrature
• Random Numbers
• Quasi-Random Sequences
• Random Distributions
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• Statistics, Histograms
• N-Tuples
• Monte Carlo Integration
• Simulated Annealing
• Differential Equations
• Interpolation
• Numerical Differentiation
• Chebyshev Approximation
• Root-Finding
• Minimization
• Least-Squares Fitting



Putting Performance into Development: Compilers

…this talk is about principles and 
practices during the later stages 
of development that lead to better 
performance on a per-core basis
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Compiler Options
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• There are three important categories:
– Optimization level
– Architecture specification
– Interprocedural optimization

• Generally you’ll want to supply one option from each category



Let the Compiler Do the Optimization

• Be aware that compilers can do sophisticated optimization
– Realize that the compiler will follow your lead
– Structure the code so it’s easy for the compiler to do the right thing (and 

for other humans to understand it)
– Favor simpler language constructs (pointers and OO code won’t help)

• Use the latest compilers and optimization options
– Check available compiler options

<compiler_command> --help {lists/explains options}
– Refer to the User Guides, they usually list “best practice” options
– Experiment with combinations of options
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Basic Optimization Level:  -On

• -O0 = no optimization: disable all optimization for fast compilation
• -O1 = compact optimization: optimize for speed, but disable 

optimizations which increase code size
• -O2 = default optimization
• -O3 = aggressive optimization: rearrange code more freely, e.g., 

perform scalar replacements, loop transformations, etc.

• Note that specifying -O3 is not always worth it…
– Can make compilation more time- and memory-intensive
– Might be only marginally effective
– Carries a risk of changing code semantics and results
– Sometimes even breaks codes!
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-O2 vs. -O3

• Operations performed at default optimization level, -O2
– Instruction rescheduling
– Copy propagation
– Software pipelining
– Common subexpression elimination
– Prefetching
– Some loop transformations

• Operations performed at higher optimization levels, e.g., -O3
– Aggressive prefetching
– More loop transformations
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Know Your Chip

• SSE level and other capabilities depend on the exact chip

• Taking an AMD Opteron “Barcelona” from Ranger as an example…
– Supports AMD64, SSE, SSE2, SSE3, and “SSE4a” (subset of SSE4)
– Does not support AMD’s more recent SSE5
– Does not support all of Intel’s SSE4, nor its SSSE = Supplemental SSE

• In Linux, a standard file shows features of your system’s architecture
– cat /proc/cpuinfo {shows cpu information}
– If you want to see even more, do a Web search on the model number

• This information can be used during compilation
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Specifying Architecture in the Compiler Options
With -x<code> {code = W, P, T, O, S… } or a similar option, you tell the 

compiler to use the most advanced SSE instruction set for the target 
hardware.  Here are a few examples of processor-specific options.

Intel 10.1 compilers:
• -xW = use SSE2 instructions (recommended for Ranger)
• -xO = include SSE3 instructions (also good for Ranger)
• -xT = SSE3 & SSSE3 (no good, SSSE is for Intel chips only)
• In Intel 11.0, these become -msse2, -msse3, and -xssse3

PGI compilers:
• -tp barcelona-64 = use instruction set for Barcelona chip
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Interprocedural Optimization (IP)
• Most compilers will handle IP within a single file (option -ip)

• The Intel -ipo compiler option does more
– It places additional information in each object file
– During the load phase, IP among ALL objects is performed
– This may take much more time, as code is recompiled during linking
– It is important to include options in link command (-ipo -O3 -xW, etc.)
– All this works because the special Intel xild loader replaces ld
– When archiving in a library, you must use xiar, instead of ar
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Interprocedural Optimization Options
Intel 10.1 compilers:
• -ip     enable single-file interprocedural (IP) optimizations

– Limits optimizations to within individual files
– Produces line numbers for debugging

• -ipo   enable multi-file IP optimizations (between files)

PGI compilers:
• -Mipa=fast,inline enable interprocedural optimization

There is a loader problem with this option
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Other Intel Compiler Options
• -g            generate debugging information, symbol table
• -vec_report# {# = 0-5} turn on vector diagnostic reporting –

make sure your innermost loops are vectorized
• -C (or -check) enable extensive runtime error checking
• -CB -CU check bounds, check uninitialized variables
• -convert kw specify format for binary I/O by keyword {kw =

big_endian, cray, ibm, little_endian, native, vaxd}
• -openmp multithread based on OpenMP directives
• -openmp_report# {# = 0-2} turn on OpenMP diagnostic reporting
• -static load libs statically at runtime – do not use
• -fast same as -O2 -ipo -static; not allowed on Ranger
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Other PGI Compiler Options
• -fast use a suite of processor-specific optimizations:

-O2 -Munroll=c:1 -Mnoframe -Mlre -Mautoinline 
-Mvect=sse -Mscalarsse -Mcache_align -Mflushz

• -mp multithread the executable based on OpenMP 
directives

• -Minfo=mp,ipa turn on diagnostic reporting for OpenMP, IP
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Best Practices for Compilers
• Normal compiling for Ranger

– Intel: 
icc/ifort -O3 -ipo -xW prog.c/cc/f90

– PGI:
pgcc/pgcpp/pgf95 -fast -tp barcelona-64 prog.c/cc/f90

– GNU:
gcc -O3 -fast -xipo -mtune=barcelona -march=barcelona prog.c

• -O2 is the default; compile with -O0 if this breaks (very rare)
• Effects of Intel’s -xW and -xO options may vary
• Debug options should not be used in a production compilation! 

– Compile like this only for debugging: ifort -O2 -g -CB test.c
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Lab: Compiler-Optimized Naïve Code vs. Libraries

• Challenge: how fast can we do a linear solve via LU decomposition?
• Naïve code is copied from Numerical Recipes
• Two alternative codes are based on calls to GSL and LAPACK

– LAPACK references can be resolved by linking to an optimized library 
like AMD’s ACML or Intel’s MKL 

• We want to compare the timings of these codes when compiled with
different compilers and optimizations
– Compile the codes with different flags, including “-g”, “-O2”, “-O3”
– Submit a job to see how fast the codes run
– Recompile with new flags and try again
– Can even try to use the libraries’ built-in OpenMP multithreading

• Source sits in ~train100/labs/ludecomp.tgz
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Putting Performance into Development: Tuning

…this talk is about principles and 
practices during the later stages 
of development that lead to better 
performance on a per-core basis
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In-Depth vs. Rough Tuning

In-depth tuning is a long, iterative process:
• Profile code
• Work on most time intensive blocks
• Repeat as long as you can tolerate…

For rough tuning during development:
• It helps to know about common 

microarchitectural features (like SSE)
• It helps to have a sense of how the 

compiler tries to optimize instructions, 
given certain features
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First Rule of Thumb: Minimize Your Stride
• Minimize stride length

– It increases cache efficiency
– It sets up hardware and software prefetching
– Stride lengths of large powers of two are typically the worst case, 

leading to cache and TLB misses (due to limited cache associativity)
• Strive for stride-1 vectorizable loops

– Can be sent to a SIMD unit
– Can be unrolled and pipelined
– Can be parallelized through OpenMP directives
– Can be “automatically” parallelized (be careful…)
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G4/5 Velocity Engine (SIMD)
Intel/AMD MMX, SSE, SSE2, SSE3 (SIMD)
Cray Vector Units



The Penalty of Stride > 1

• For large and small 
arrays, always try to 
arrange data so that 
structures are arrays 
with a unit (1) stride.
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Bandwidth Performance Code:

do i = 1,10000000,istride
sum = sum + data( i )
end do

Performance of Strided Access
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Stride 1 in Fortran and C
• The following snippets of code illustrate the correct way to access 

contiguous elements of a matrix, i.e., stride 1 in Fortran and C
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Fortran Example:

real*8 :: a(m,n), b(m,n), c(m,n) 
... 
do i=1,n 

do j=1,m 
a(j,i)=b(j,i)+c(j,i) 

end do 
end do 

C Example:

double a[m][n], b[m][n], c[m][n]; 
... 
for (i=0;i < m;i++){ 

for (j=0;j < n;j++){ 
a[i][j]=b[i][j]+c[i][j]; 

} 
}



Second Rule of Thumb: Inline Your Functions
• What does inlining achieve?

– It replaces a function call with a full copy of that function’s instructions
– It avoids putting variables on the stack, jumping, etc.

• When is inlining important?
– When the function is a hot spot
– When function call overhead is comparable to time spent in the routine
– When it can benefit from Inter-Procedural Optimization

• As you develop “think inlining”
– The C “inline” keyword provides inlining within source
– Use -ip or -ipo to allow the compiler to inline
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integer :: ndim=2, niter=10000000
real*8  :: x(ndim), x0(ndim), r
integer :: i, j

...
do i=1,niter

...
r=dist(x,x0,ndim)
...

end do
...

end program
real*8 function dist(x,x0,n)
real*8  :: x0(n), x(n), r
integer :: j,n
r=0.0
do j=1,n

r=r+(x(j)-x0(j))**2
end do
dist=r
end function

integer:: ndim=2, niter=10000000
real*8  :: x(ndim), x0(ndim), r
integer :: i, j

...
do i=1,niter

...
r=0.0
do j=1,ndim

r=r+(x(j)-x0(j))**2
end do
...

end do
...

end program

Example: Procedure Inlining

12/7/2010 www.cac.cornell.edu 33

Trivial function dist is 
called niter times

function dist has been 
inlined inside the i loop

Low-overhead loop j 
executes niter times



Best Practices from the Ranger User Guide
• Avoid excessive program modularization (i.e. too many 

functions/subroutines) 
– Write routines that can be inlined 
– Use macros and parameters whenever possible 

• Minimize the use of pointers 
• Avoid casts or type conversions, implicit or explicit

– Conversions involve moving data between different execution units 
• Avoid branches, function calls, and I/O inside loops

– Why pay overhead over and over? 
– Structure loops to eliminate conditionals 
– Move loops into the subroutine, instead of looping around a subroutine 

call

12/7/2010 www.cac.cornell.edu 34



More Best Practices from the Ranger User Guide
• Additional performance can be obtained with these techniques:

– Memory Subsystem Tuning: Optimize access to the memory by 
minimizing the stride length and/or employing “cache blocking”
techniques such as loop tiling

– Floating-Point Tuning: Unroll inner loops to hide FP latencies, and avoid
costly operations like division and exponentiation

– I/O Tuning: Use direct-access binary files or MPI-IO to improve the I/O 
performance

• These techniques are explained in further detail, with examples, in a 
Memory Subsystem Tuning document found online
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Array Blocking, or Loop Tiling, to Fit Cache
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Example: matrix-matrix
multiplication 

real*8 a(n,n), b(n,n), c(n,n)
do ii=1,n,nb 

do jj=1,n,nb    
do kk=1,n,nb      

do i=ii,min(n,ii+nb-1)
do j=jj,min(n,jj+nb-1)

do k=kk,min(n,kk+nb-1)

c(i,j)=c(i,j)+a(i,k)*b(k,j)

nb x nb nb x nb nb x nb nb x nb

Takeaway: all the performance libraries do this, so you don’t have to
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