
Steve Lantz
Senior Research Associate

Cornell CAC

Per-Core Performance Optimization

Workshop: Data Analysis on Ranger, December 9, 2010

Putting Performance into Design and Development

…this talk is about principles and
practices during the later stages
of development that lead to better
performance on a per-core basis

12/7/2010 www.cac.cornell.edu 2

MODEL ALGORITHM IMPLEMEN-
TATION COMPILATION RUNTIME

ENVIRONMENT

PARALLELISM,
SCALABILITY

PERFORMANCE
LIBRARIES

COMPILER
OPTIONS

DIAGNOSTICS
AND TUNING

Designing for
parallelism and
scalability is a
topic in itself…

What Matters Most in Per-Core Performance

Good memory locality!
• Code accesses contiguous memory addresses

– Reason: Data always arrive in cache lines which include neighbors
– Reason: Loops become vectorizable via SSE (explained in a moment)

• Code emphasizes cache reuse
– Reason: When operations on a given data item are collected together,

the item remains in cache, where access is much faster than RAM
• Data are aligned on doubleword boundaries

– Reason: More efficient to have data items not straddling cache lines
Goal: make your data stay in cache as long as possible, so that

deeper levels of the memory hierarchy are accessed infrequently
• This is even more important for GPUs than it is for CPUs

Understanding The Memory Hierarchy

12/7/2010 www.cac.cornell.edu 4

Functional Units

L1 Cache

Registers

Local Memory

L2 Cache

L2 Cache 1 MB

Memory 1 GB

L1 Cache 16/32 KB

Relative Memory Sizes

L3 Cache Off Die

~25 GB/s

~50 GB/s

Relative Memory Bandwidths

~12 GB/s

~8 GB/s

Processor

~5 CP

Latency

~15 CP

~300 CP

What’s the Target Architecture?

• AMD initiated the x86-64 or x64 instruction set
– Extends Intel’s 32-bit x86 instruction set to handle 64-bit addressing
– Encompasses both AMD64 and EM64T = “Intel 64”
– Differs from IA-64 (now called “Intel Itanium Architecture”)

• Additional SSE instructions access special registers & operations
– 128-bit registers can hold 4 floats/ints or 2 doubles simultaneously
– Within an SSE register, “vector” operations can be applied
– Operations are also pipelined (e.g., load > multiply > add > store)
– Therefore, multiple results can be produced every clock cycle
– New with “Sandy Bridge”: Advanced Vector Extensions (AVX), Intel’s

latest add-ons to the x64 instruction set for 256-bit registers

12/7/2010 www.cac.cornell.edu 5

Understanding SSE, SIMD, and Micro-Parallelism
• For “vectorizable” loops with independent iterations, SSE

instructions can be employed…

SSE = Streaming SIMD
Extensions

SIMD = Single Instruction,
Multiple Data

Instructions operate on multiple
arguments simultaneously, in
parallel Execution Units

12/7/2010 www.cac.cornell.edu 6

D
at

a
Po

ol

Instructions
SIMD

SSE
EU

SSE
EU

SSE
EU

SSE
EU

Putting Performance into Development: Libraries

…this talk is about principles and
practices during the later stages
of development that lead to better
performance on a per-core basis

12/7/2010 www.cac.cornell.edu 7

MODEL ALGORITHM IMPLEMEN-
TATION COMPILATION RUNTIME

ENVIRONMENT

PERFORMANCE
LIBRARIES

Designing for
parallelism and
scalability is a
topic in itself…

COMPILER
OPTIONS

DIAGNOSTICS
AND TUNING

PARALLELISM,
SCALABILITY

Performance Libraries
• Optimized for specific architectures (chip + platform + system)
• Offered by different vendors

– Intel Math Kernel Library (MKL)
– AMD Core Math Library (ACML)
– ESSL/PESSL on IBM systems
– Cray libsci for Cray systems
– SCSL for SGI systems

• Usually far superior to hand-coded routines for “hot spots”
– Writing your own library routines by hand is not merely re-inventing the

wheel; it’s more like re-inventing the muscle car
– Numerical Recipes books are NOT a source of optimized code:

performance libraries can run 100x faster

12/7/2010 www.cac.cornell.edu 8

HPC Software on Ranger, from Apps to Libs

12/7/2010 www.cac.cornell.edu 9

TAU
PAPI
…

AMBER
NAMD
GROMACS

GAMESS
NWChem
…

MKL
ACML
GSL
GotoBLAS
GotoBLAS2

FFTW(2/3)
…

PETSc

PLAPACK
ScaLAPACK
SLEPc

METIS
ParMETIS

SPRNG
…

NetCDF
HDF5
PHDF5
…

Applications Parallel Libs Math Libs Input/Output Diagnostics

Intel MKL 10.0 (Math Kernel Library)
• Is optimized for the IA-32, Intel 64, Intel Itanium architectures
• Supports Fortran and C interfaces
• Includes functions in the following areas:

– Basic Linear Algebra Subroutines, for BLAS levels 1-3 (e.g., Ax+y)
– LAPACK, for linear solvers and eigensystems analysis
– FFT routines
– Transcendental functions
– Vector Math Library (VML), for vectorized transcendentals
– …others

12/7/2010 www.cac.cornell.edu 10

Using Intel MKL on Ranger
• Enable MKL

– module load mkl
– module help mkl

• Compile and link for C/C++

mpicc -I$TACC_MKL_INC mkl_test.c -L$TACC_MKL_LIB -lmkl_em64t

• Compile and link for Fortran

mpif90 mkl_test.f90 -L$TACC_MKL_LIB -lmkl_em64t

12/7/2010 www.cac.cornell.edu 11

GotoBLAS and FFTW

GotoBLAS
• Hand-optimized BLAS, minimizes TLB misses
• Only testing will tell what kind of advantage your code gets

FFTW, the Fastest Fourier Transform in the West
• Cooley-Tukey
• Prime Factor algorithm, most efficient with small prime factors like

(2, 3, 5, and 7)
• Automatic performance adaptation

12/7/2010 www.cac.cornell.edu 12

GSL, the GNU Scientific Library

• Special Functions
• Vectors and Matrices
• Permutations
• Sorting
• Linear Algebra/BLAS Support
• Eigensystems
• Fast Fourier Transforms
• Quadrature
• Random Numbers
• Quasi-Random Sequences
• Random Distributions

12/7/2010 www.cac.cornell.edu 13

• Statistics, Histograms
• N-Tuples
• Monte Carlo Integration
• Simulated Annealing
• Differential Equations
• Interpolation
• Numerical Differentiation
• Chebyshev Approximation
• Root-Finding
• Minimization
• Least-Squares Fitting

Putting Performance into Development: Compilers

…this talk is about principles and
practices during the later stages
of development that lead to better
performance on a per-core basis

12/7/2010 www.cac.cornell.edu 14

MODEL ALGORITHM IMPLEMEN-
TATION COMPILATION RUNTIME

ENVIRONMENT

PERFORMANCE
LIBRARIES

COMPILER
OPTIONS

DIAGNOSTICS
AND TUNING

Designing for
parallelism and
scalability is a
topic in itself…

PARALLELISM,
SCALABILITY

Compiler Options

12/7/2010 www.cac.cornell.edu 15

• There are three important categories:
– Optimization level
– Architecture specification
– Interprocedural optimization

• Generally you’ll want to supply one option from each category

Let the Compiler Do the Optimization

• Be aware that compilers can do sophisticated optimization
– Realize that the compiler will follow your lead
– Structure the code so it’s easy for the compiler to do the right thing (and

for other humans to understand it)
– Favor simpler language constructs (pointers and OO code won’t help)

• Use the latest compilers and optimization options
– Check available compiler options

<compiler_command> --help {lists/explains options}
– Refer to the User Guides, they usually list “best practice” options
– Experiment with combinations of options

12/7/2010 www.cac.cornell.edu 16

Basic Optimization Level: -On

• -O0 = no optimization: disable all optimization for fast compilation
• -O1 = compact optimization: optimize for speed, but disable

optimizations which increase code size
• -O2 = default optimization
• -O3 = aggressive optimization: rearrange code more freely, e.g.,

perform scalar replacements, loop transformations, etc.

• Note that specifying -O3 is not always worth it…
– Can make compilation more time- and memory-intensive
– Might be only marginally effective
– Carries a risk of changing code semantics and results
– Sometimes even breaks codes!

12/7/2010 www.cac.cornell.edu 17

-O2 vs. -O3

• Operations performed at default optimization level, -O2
– Instruction rescheduling
– Copy propagation
– Software pipelining
– Common subexpression elimination
– Prefetching
– Some loop transformations

• Operations performed at higher optimization levels, e.g., -O3
– Aggressive prefetching
– More loop transformations

12/7/2010 www.cac.cornell.edu 18

Know Your Chip

• SSE level and other capabilities depend on the exact chip

• Taking an AMD Opteron “Barcelona” from Ranger as an example…
– Supports AMD64, SSE, SSE2, SSE3, and “SSE4a” (subset of SSE4)
– Does not support AMD’s more recent SSE5
– Does not support all of Intel’s SSE4, nor its SSSE = Supplemental SSE

• In Linux, a standard file shows features of your system’s architecture
– cat /proc/cpuinfo {shows cpu information}
– If you want to see even more, do a Web search on the model number

• This information can be used during compilation

12/7/2010 www.cac.cornell.edu 19

Specifying Architecture in the Compiler Options
With -x<code> {code = W, P, T, O, S… } or a similar option, you tell the

compiler to use the most advanced SSE instruction set for the target
hardware. Here are a few examples of processor-specific options.

Intel 10.1 compilers:
• -xW = use SSE2 instructions (recommended for Ranger)
• -xO = include SSE3 instructions (also good for Ranger)
• -xT = SSE3 & SSSE3 (no good, SSSE is for Intel chips only)
• In Intel 11.0, these become -msse2, -msse3, and -xssse3

PGI compilers:
• -tp barcelona-64 = use instruction set for Barcelona chip

12/7/2010 www.cac.cornell.edu 20

Interprocedural Optimization (IP)
• Most compilers will handle IP within a single file (option -ip)

• The Intel -ipo compiler option does more
– It places additional information in each object file
– During the load phase, IP among ALL objects is performed
– This may take much more time, as code is recompiled during linking
– It is important to include options in link command (-ipo -O3 -xW, etc.)
– All this works because the special Intel xild loader replaces ld
– When archiving in a library, you must use xiar, instead of ar

12/7/2010 www.cac.cornell.edu 21

Interprocedural Optimization Options
Intel 10.1 compilers:
• -ip enable single-file interprocedural (IP) optimizations

– Limits optimizations to within individual files
– Produces line numbers for debugging

• -ipo enable multi-file IP optimizations (between files)

PGI compilers:
• -Mipa=fast,inline enable interprocedural optimization

There is a loader problem with this option

12/7/2010 www.cac.cornell.edu 22

Other Intel Compiler Options
• -g generate debugging information, symbol table
• -vec_report# {# = 0-5} turn on vector diagnostic reporting –

make sure your innermost loops are vectorized
• -C (or -check) enable extensive runtime error checking
• -CB -CU check bounds, check uninitialized variables
• -convert kw specify format for binary I/O by keyword {kw =

big_endian, cray, ibm, little_endian, native, vaxd}
• -openmp multithread based on OpenMP directives
• -openmp_report# {# = 0-2} turn on OpenMP diagnostic reporting
• -static load libs statically at runtime – do not use
• -fast same as -O2 -ipo -static; not allowed on Ranger

12/7/2010 www.cac.cornell.edu 23

Other PGI Compiler Options
• -fast use a suite of processor-specific optimizations:

-O2 -Munroll=c:1 -Mnoframe -Mlre -Mautoinline
-Mvect=sse -Mscalarsse -Mcache_align -Mflushz

• -mp multithread the executable based on OpenMP
directives

• -Minfo=mp,ipa turn on diagnostic reporting for OpenMP, IP

12/7/2010 www.cac.cornell.edu 24

Best Practices for Compilers
• Normal compiling for Ranger

– Intel:
icc/ifort -O3 -ipo -xW prog.c/cc/f90

– PGI:
pgcc/pgcpp/pgf95 -fast -tp barcelona-64 prog.c/cc/f90

– GNU:
gcc -O3 -fast -xipo -mtune=barcelona -march=barcelona prog.c

• -O2 is the default; compile with -O0 if this breaks (very rare)
• Effects of Intel’s -xW and -xO options may vary
• Debug options should not be used in a production compilation!

– Compile like this only for debugging: ifort -O2 -g -CB test.c

12/7/2010 www.cac.cornell.edu 25

Lab: Compiler-Optimized Naïve Code vs. Libraries

• Challenge: how fast can we do a linear solve via LU decomposition?
• Naïve code is copied from Numerical Recipes
• Two alternative codes are based on calls to GSL and LAPACK

– LAPACK references can be resolved by linking to an optimized library
like AMD’s ACML or Intel’s MKL

• We want to compare the timings of these codes when compiled with
different compilers and optimizations
– Compile the codes with different flags, including “-g”, “-O2”, “-O3”
– Submit a job to see how fast the codes run
– Recompile with new flags and try again
– Can even try to use the libraries’ built-in OpenMP multithreading

• Source sits in ~train100/labs/ludecomp.tgz

12/7/2010 www.cac.cornell.edu 26

Putting Performance into Development: Tuning

…this talk is about principles and
practices during the later stages
of development that lead to better
performance on a per-core basis

12/7/2010 www.cac.cornell.edu 27

MODEL ALGORITHM IMPLEMEN-
TATION COMPILATION RUNTIME

ENVIRONMENT

PERFORMANCE
LIBRARIES

COMPILER
OPTIONS

DIAGNOSTICS
AND TUNING

Designing for
parallelism and
scalability is a
topic in itself…

PARALLELISM,
SCALABILITY

In-Depth vs. Rough Tuning

In-depth tuning is a long, iterative process:
• Profile code
• Work on most time intensive blocks
• Repeat as long as you can tolerate…

For rough tuning during development:
• It helps to know about common

microarchitectural features (like SSE)
• It helps to have a sense of how the

compiler tries to optimize instructions,
given certain features

12/7/2010 www.cac.cornell.edu 28

REVIEW
PROFILE

TUNE MOST
TIME-INTENSIVE

SECTION

DECENT
PERFORMANCE

GAIN?YES NO

MORE
EFFORT ON

THIS?

STOP

CHECK
IMPROVEMENT RE-

EVALUATE

YES

NO

First Rule of Thumb: Minimize Your Stride
• Minimize stride length

– It increases cache efficiency
– It sets up hardware and software prefetching
– Stride lengths of large powers of two are typically the worst case,

leading to cache and TLB misses (due to limited cache associativity)
• Strive for stride-1 vectorizable loops

– Can be sent to a SIMD unit
– Can be unrolled and pipelined
– Can be parallelized through OpenMP directives
– Can be “automatically” parallelized (be careful…)

12/7/2010 www.cac.cornell.edu 29

G4/5 Velocity Engine (SIMD)
Intel/AMD MMX, SSE, SSE2, SSE3 (SIMD)
Cray Vector Units

The Penalty of Stride > 1

• For large and small
arrays, always try to
arrange data so that
structures are arrays
with a unit (1) stride.

12/7/2010 www.cac.cornell.edu 30

Bandwidth Performance Code:

do i = 1,10000000,istride
sum = sum + data(i)
end do

Performance of Strided Access

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

Stride

Ef
fe

ct
iv

e
B

an
dw

id
th

(M

B
/s

)

Stride 1 in Fortran and C
• The following snippets of code illustrate the correct way to access

contiguous elements of a matrix, i.e., stride 1 in Fortran and C

12/7/2010 www.cac.cornell.edu 31

Fortran Example:

real*8 :: a(m,n), b(m,n), c(m,n)
...
do i=1,n

do j=1,m
a(j,i)=b(j,i)+c(j,i)

end do
end do

C Example:

double a[m][n], b[m][n], c[m][n];
...
for (i=0;i < m;i++){

for (j=0;j < n;j++){
a[i][j]=b[i][j]+c[i][j];

}
}

Second Rule of Thumb: Inline Your Functions
• What does inlining achieve?

– It replaces a function call with a full copy of that function’s instructions
– It avoids putting variables on the stack, jumping, etc.

• When is inlining important?
– When the function is a hot spot
– When function call overhead is comparable to time spent in the routine
– When it can benefit from Inter-Procedural Optimization

• As you develop “think inlining”
– The C “inline” keyword provides inlining within source
– Use -ip or -ipo to allow the compiler to inline

12/7/2010 www.cac.cornell.edu 32

integer :: ndim=2, niter=10000000
real*8 :: x(ndim), x0(ndim), r
integer :: i, j

...
do i=1,niter

...
r=dist(x,x0,ndim)
...

end do
...

end program
real*8 function dist(x,x0,n)
real*8 :: x0(n), x(n), r
integer :: j,n
r=0.0
do j=1,n

r=r+(x(j)-x0(j))**2
end do
dist=r
end function

integer:: ndim=2, niter=10000000
real*8 :: x(ndim), x0(ndim), r
integer :: i, j

...
do i=1,niter

...
r=0.0
do j=1,ndim

r=r+(x(j)-x0(j))**2
end do
...

end do
...

end program

Example: Procedure Inlining

12/7/2010 www.cac.cornell.edu 33

Trivial function dist is
called niter times

function dist has been
inlined inside the i loop

Low-overhead loop j
executes niter times

Best Practices from the Ranger User Guide
• Avoid excessive program modularization (i.e. too many

functions/subroutines)
– Write routines that can be inlined
– Use macros and parameters whenever possible

• Minimize the use of pointers
• Avoid casts or type conversions, implicit or explicit

– Conversions involve moving data between different execution units
• Avoid branches, function calls, and I/O inside loops

– Why pay overhead over and over?
– Structure loops to eliminate conditionals
– Move loops into the subroutine, instead of looping around a subroutine

call

12/7/2010 www.cac.cornell.edu 34

More Best Practices from the Ranger User Guide
• Additional performance can be obtained with these techniques:

– Memory Subsystem Tuning: Optimize access to the memory by
minimizing the stride length and/or employing “cache blocking”
techniques such as loop tiling

– Floating-Point Tuning: Unroll inner loops to hide FP latencies, and avoid
costly operations like division and exponentiation

– I/O Tuning: Use direct-access binary files or MPI-IO to improve the I/O
performance

• These techniques are explained in further detail, with examples, in a
Memory Subsystem Tuning document found online

12/7/2010 www.cac.cornell.edu 35

Array Blocking, or Loop Tiling, to Fit Cache

12/7/2010 www.cac.cornell.edu 36

Example: matrix-matrix
multiplication

real*8 a(n,n), b(n,n), c(n,n)
do ii=1,n,nb

do jj=1,n,nb
do kk=1,n,nb

do i=ii,min(n,ii+nb-1)
do j=jj,min(n,jj+nb-1)

do k=kk,min(n,kk+nb-1)

c(i,j)=c(i,j)+a(i,k)*b(k,j)

nb x nb nb x nb nb x nb nb x nb

Takeaway: all the performance libraries do this, so you don’t have to

	Putting Performance into Design and Development
	What Matters Most in Per-Core Performance
	Understanding The Memory Hierarchy
	What’s the Target Architecture?
	Understanding SSE, SIMD, and Micro-Parallelism
	Putting Performance into Development: Libraries
	Performance Libraries
	HPC Software on Ranger, from Apps to Libs
	Intel MKL 10.0 (Math Kernel Library)
	Using Intel MKL on Ranger
	GotoBLAS and FFTW
	GSL, the GNU Scientific Library
	Putting Performance into Development: Compilers
	Compiler Options
	Let the Compiler Do the Optimization
	Basic Optimization Level: -On
	-O2 vs. -O3
	Know Your Chip
	Specifying Architecture in the Compiler Options
	Interprocedural Optimization (IP)
	Interprocedural Optimization Options
	Other Intel Compiler Options
	Other PGI Compiler Options
	Best Practices for Compilers
	Lab: Compiler-Optimized Naïve Code vs. Libraries
	Putting Performance into Development: Tuning
	In-Depth vs. Rough Tuning
	First Rule of Thumb: Minimize Your Stride
	The Penalty of Stride > 1
	Stride 1 in Fortran and C
	Second Rule of Thumb: Inline Your Functions
	Example: Procedure Inlining
	Best Practices from the Ranger User Guide
	More Best Practices from the Ranger User Guide
	Array Blocking, or Loop Tiling, to Fit Cache

