
Data Formats and Databases

Linda Woodard

Consultant

Cornell CAC

Workshop: Data Analysis on Ranger, January 19, 2012

How will you store your data?

• Binary data is compact but not portable

– Machine readable only

– Byte-order issues: big endian (IBM) vs. little endian (Intel)

• Formatted text is portable but not compact

– Need to know all the details of formatting to read the data

– 1 byte of ASCII text stores only a single decimal digit (~3 bits)

– Compression can help, but is slow and often impractical for large files

• Need to consider how data will be used

– Is portability an issue?

– Will your favorite analysis tools be able to read the data?

– Are there storage constraints?

1/19/2012 www.cac.cornell.edu 2

Data Preservation and Discovery

• NSF requires a data management plan with all grant proposals

 Metadata

 Formats used

 Data location

 Discovery and access plans

https://confluence.cornell.edu/display/rdmsgweb/Home

• Large Research Projects

 Personnel

 Long time horizons

 Distant collaborators

• Scientific data formats address some of these issues…

1/19/2012 www.cac.cornell.edu 3

https://confluence.cornell.edu/display/rdmsgweb/Home
https://confluence.cornell.edu/display/rdmsgweb/Home

1/19/2012 www.cac.cornell.edu 4

Hierarchical Scientific Data Formats

Data

Format

Academic

Discipline

Parallel

I/O

Software Interfaces Comments

HDF5 2D and higher

dimensional

data

yes C, C++, Fortran, Java,

Python, Perl, IDL, Matlab,

Mathematica

developed at

NCSA

NetCDF

Earth Sciences yes C, C++, Fortran, Java,

Python, Perl, Ruby, IDL, R,

Matlab, ArcGIS

developed at

UCAR

FITS Astrophysics

no

C, C++, Fortran, Java,

Python, Perl, IDL, R,

Matlab, Mathematica

developed at

NASA

Silo General

Visualization

yes VisIt developed at

LLNL

Scientific Data Formats: HDF5

• Versatile data model that can represent complex data objects and

metadata

• Portable file format with no limit on the number or size of data objects

• Open software library that runs on platforms from laptops to massively

parallel systems

• Integrated performance features that optimize access time and

storage space

• Tools and applications for managing, manipulating, viewing, and

analyzing the data in the collection

Source: www.hdfgroup.org/hdf5

 1/19/2012 www.cac.cornell.edu 5

HDF5 Features

• Headers include extensive metadata (datatypes, dimensionality,

storage layout); files are self-documenting

• Virtual file layer provides flexible storage and transfer capabilities:

Standard (Posix), Parallel, and Network I/O file drivers

• Compression & chunking increase access and storage efficiency

• Datatype transformations can be performed during I/O operations

• Subsetting reduces transferred data volume & improves access

speed during I/O operations

Source: www.hdfgroup.org/hdf5

1/19/2012 www.cac.cornell.edu 6

Scientific Data Formats: netCDF

• Similar to HDF5; newest version uses the HDF5 format

• Used extensively in the Earth Sciences community for time varying

geospatial data; most data from NOAA is in netCDF format

• NetCDF has good tools for geo-gridded data

– Panoply (http://www.giss.nasa.gov/tools/panoply/) focuses on the presentation

of geo-gridded data.

– Ferret (http://ferret.wrc.noaa.gov/Ferret/) offers a Mathematica-like approach to

analysis. Variables and expressions may be defined interactively; calculations

may be applied over arbitrarily shaped regions; geophysical formatting is built in.

– Parallel-NetCDF (http://trac.mcs.anl.gov/projects/parallel-netcdf/) is

built upon MPI-IO to distribute file reads and writes efficiently among

multiple processors.

Source: http://www.unidata.ucar.edu/software/netcdf

1/19/2012 www.cac.cornell.edu 7

http://www.giss.nasa.gov/tools/panoply/
http://ferret.wrc.noaa.gov/Ferret/
http://trac.mcs.anl.gov/projects/parallel-netcdf/
http://trac.mcs.anl.gov/projects/parallel-netcdf/
http://trac.mcs.anl.gov/projects/parallel-netcdf/

netCDF Features

• Self-Describing—files include information about the data they contain

• Portable—endian problems handled automatically

• Direct-access—subsets of a larger dataset can be accessed without

reading through all the preceding data

• Appendable—data may be appended to a properly structured netCDF

file without copying the dataset or redefining its structure

• Shareable—one writer and multiple readers may simultaneously

access the same netCDF file

• Archivable—netCDF will always be backwards compatible

Source: http://www.unidata.ucar.edu/software/netcdf

1/19/2012 www.cac.cornell.edu 8

Scientific Data Formats: Silo

• Silo is a library for reading and writing scientific data to binary disk files

• Silo supports point meshes, structured and unstructured meshes in 2D

and 3D

• Two layers

– API with Fortran, C, and Python interfaces

– I/O driver (HDF5 is one of these drivers)

• Primary file format for VisIt

https://wci.llnl.gov/codes/silo/index.html

1/19/2012 www.cac.cornell.edu 9

Why Parallel I/O is important

1/19/2012 www.cac.cornell.edu 10

P0 P1 P2 P3

I/O lib

File system

• P0 may become bottleneck

• System memory may be

exceeded on P0

Why Parallel I/O is important – part 2

1/19/2012 www.cac.cornell.edu 11

P0 P1 P2 P3

I/O lib

File system

• Possible to achieve good

performance

• May require post-processing

• More work for applications,

programmers

I/O lib I/O lib I/O lib

Why Parallel I/O is important – part 3

1/19/2012 www.cac.cornell.edu 12

P0 P1 P2 P3

Parallel I/O lib (based on MPI-IO)

Parallel file system

• HDF5, netCDF and Silo can

take the place of a parallel I/O

library - they’ve linked the

parallel I/O library for you

• Variant: only P1 and P2 act as

parallel writers; they gather

data from P0 and P3

respectively (chunking)

Scientific Data Formats: Scientific Databases

• What is a database?

 from Wikipedia—an organized collection of data

• When to use a database

 Data hierarchy more complicated than space/time dimensions

• Database added value

 Built-in data integrity checks

 Management of row duplication

 Enforcement of data ranges and types

 Enforces planning about the data to be stored

 Data types (integer, decimal, datetime), scale, precision

 Missing data (null values)

 Scalability

1/19/2012 www.cac.cornell.edu 13

Scientific Databases vs. Hierarchical Data Formats

• Academic Disciplines

All with any kind of hierarchical data

• Parallel I/O

 Available from many commercial vendors and open sources

• Software interfaces to SQL databases

 C, C++, C#, Fortran, Java, Python, Perl, Ruby, IDL, R, Matlab,

ArcGIS, Excel

• Advanced query capabilities

 Fine grained ability to extract subsets of the data efficiently

1/19/2012 www.cac.cornell.edu 14

Relational Database Software

• Enterprise-class relational database systems

 Oracle

 Microsoft SQL Server

 MySQL

 PostgreSQL

• Small, light-weight relational database systems

 SQLite (C based)

 SmallSQL (Java based)

 Apache Derby (Java based)

 Gadfly (Python based)

1/19/2012 www.cac.cornell.edu 15

Real life example

• A Facebook application that allows people to show their arXiv.org

papers on their Facebook profile page

• The application needs to store information about papers so that it

can extract these papers based on queries about authors

• Conceptually we have a couple of objects we want to connect:

– Authors (Facebook ID, arXiv info, etc.)

– Papers (title, abstract, journal reference, etc.)

• Two approaches to this problem

1/19/2012 www.cac.cornell.edu 16

Approach one – Delimited flat file

• Add a row to the table for every unique paper an author has written

• Search the table for all rows that have the appropriate ID

• Benefits:

– Easy to add new entries (depending on sorting); harder with more entries

– Simple to code the read/write functions

• Problems:

– A row is duplicated for every author of a paper (e.g., Reading is neat)

– To match a given Facebook ID, a linear scan of the entire file is required

1/19/2012 www.cac.cornell.edu 17

Facebook ID Paper ID Paper Title Paper Authors

2341234 http://arxiv.org/abs/5234 Particle Pleasantry CH Foo

2341234 http://arxiv.org/abs/3234 Reading is neat CH Foo, RG Fields

1234123 http://arxiv.org/abs/4321 Science in Teaching DS Henry, RG Fields

1234123 http://arxiv.org/abs/3234 Reading is neat CH Foo, RG Fields

12341345 http://arxiv.org/abs/4321 Science in Teaching DS Henry, RG Fields

http://arxiv.org/abs/1234
http://arxiv.org/abs/3234
http://arxiv.org/abs/4321
http://arxiv.org/abs/3234
http://arxiv.org/abs/4321

Approach two – Relational database

• Define two tables

Users/Authors table and Papers table

• Link them together by the paperID

PaperID in Papers is a Primary Key; it uniquely

identifies a row

PaperID in Users is a Foreign Key; it points to a row in

another table

• Benefits

Fast retrevial of papers for an author

Easy to add fields to the Users and Papers tables

• Problems

Database management

1/19/2012 www.cac.cornell.edu 18

More relationships

• We can create relationships that are much more fined-grained

– Make the Users table more general

– Create a separate Authors table and a Reviewers table for reviews

1/19/2012 www.cac.cornell.edu 19

Relational databases

• Relational databases are based on the relational model--data is

expressed by a set of binary relationships

Flat files would replicate columns of metadata for each row

The replication gets worse when the metadata is hierarchical

1/19/2012 www.cac.cornell.edu 20

Flat file or database?

• Flat files are useful for

– Small datasets

– Static dumping of data

• Databases are useful for

– Evolving data

– Data where searching/querying is important/complex

– Expressing relationships that are not captured in a row-based table

• Other factors to consider:

– Database overhead

– Expectations about sharing data

1/19/2012 www.cac.cornell.edu 21

Interacting with a database – SQL

• SQL – Structured Query Language

 A programming language designed for the creation, management,

 modification and retrieval of data from a database

 All databases speak SQL, though many also provide non-standard

 extensions

 Using a database requires a basic knowledge of SQL

Designing a database requires extensive knowledge of SQL

• PL/SQL and SQL/PSM

 Database extensions for creating stored procedures

1/19/2012 www.cac.cornell.edu 22

SQL language – Select, Where

Select & Where control what subset of data to obtain from the database

 Retrieve sensor locations

 Retrieve sensor data for a one sensor

 Retrieve sensor data for a one time period

1/19/2012 www.cac.cornell.edu 23

SELECT * FROM SensorData

WHERE SensorID = 200

SELECT XCoordinate, YCoordinate

FROM SensorLocation

SELECT * FROM SensorData

WHERE ReadTime = ‘1/1/2012’

SQL language – Join

Use Join to retrieve data from more than one table

 Retrieve sensor data with locations

 Retrieve sensor data with sensor types

1/19/2012 www.cac.cornell.edu 24

SELECT SensorID, ReadTime,

Measurement, Xcoordinate,

YCoordinate

FROM SensorData SD

INNER JOIN SensorLocation SL

ON SD.SensorLocationID =

SL.SensorLocationID

SELECT SD.SensorID, ReadTime, Measurement, SensorValue

FROM SensorData SD

INNER JOIN Sensors S

ON SD.SensorID = S.SensorsID

INNER JOIN SensorType ST

ON S.SensorTypeID = ST.SensorTypeID

SQL language – insert, update, commit

New rows can be inserted and existing rows can be updated

 Insert a new sensor

 Update the sensor data

 Commit the transactions

1/19/2012 www.cac.cornell.edu 25

INSERT INTO SensorType (SensorTypeID,

SensorTypeDescription, SensorValue)

Values(1001,’Heat Sensor’,20)

INSERT INTO Sensors

Values(89019, 1001, ‘Cayuga’)

UPDATE Sensors

SET SensorName = ‘Cayuga Lake”

WHERE SensorID=89019

COMMIT

Dropping rows from a table mirrors SELECTing

 Delete data for a particular day

No assumptions can be made about

the order that rows are retrieved

Sort rows by location and within location

by time

SELECT * FROM SensorData

ORDER BY SensorLocationID, ReadTime

SQL language – delete, order, etc.

1/19/2012 www.cac.cornell.edu 26

DELETE FROM SensorData

WHERE ReadTime = ‘1/1/2011’

Using SQL in application code

• Most programming languages have SQL interfaces which are software

modules that provide a connection to the database and a cursor

• Note: Many interfaces have a special executeQuery function which

returns an iterable to retrieve rows (res->next())

1/19/2012 www.cac.cornell.edu 27

import MySQLdb

conn = MySQLdb.connect(host=“h”, user=“u”, passwd=“p321”, db=“test”)

cursor = conn.cursor()

cursor.execute(“SELECT * FROM SensorData WHERE SensorID = 1234”)

row = cursor.fetchone()

cursor.execute (“SELECT * FROM SensorLocations”)

row = cursor.fetchall()

cursor.close()

conn.close()

SQL language assessment

• Benefits:

– SQL is a relatively simple language

– Interfaces exist from many programming languages to every type of

database; all reasonable databases support SQL; therefore SQL is a

ubiquitous choice

– Lines of code can be drastically reduced by taking advantage of powerful

SQL commands for searching and retrieving objects from a database

• Problems:

– SQL queries can be amazingly inefficient ; there are tools for optimization

– Another language to learn

1/19/2012 www.cac.cornell.edu 28

Object-relational mapping

• Object-relational mapping (also ORM and O/R mapping) converts data

between a database and an object-oriented programming language

• An ORM tool lets you create and use a database within a standard OO

programming paradigm

 Database tables are created from class definitions

 SQL queries are basically written for you by the tool

• The ORM tools also allow you direct SQL access where optimized

queries are needed

1/19/2012 www.cac.cornell.edu 29

OR mapping

Script to create database tables

1/19/2012 www.cac.cornell.edu 30

Begin;

CREATE TABLE ‘SensorType’ (

 ‘SensorTypeID’ integer NOT NULL PRIMARY KEY,

 ‘SensorTypeDescription’ varchar(100) NOT NULL,

 ‘SensorValue’ integer NOT NULL);

CREATE TABLE ‘Sensors’ (

 ‘SensorID’ integer NOT NULL PRIMARY KEY,

 ‘SensorTypeID’ integer NOT NULL,

 ‘SensorName’ varchar(100) NOT NULL);

CREATE TABLE ‘SensorLocation’ (

 ‘SensorLocationID’ integer NOT NULL PRIMARY KEY,

 ‘XCoordinate’ integer NOT NULL,

 ‘YCoordinate’ integer NOT NULL,

 ‘Online’ integer NOT NULL;)

CREATE TABLE ‘SensorData’ (

 ‘SensorID’ integer NOT NULL,

 ‘SensorLocationID’ integer NOT NULL,

 ‘RealTime’ datetime NOT NULL,

 ‘Measurement’ integer NOT NULL;)

ALTER TABLE ‘SensorData’ ADD CONSTRAINT SensorID_refs_id

 FOREIGN KEY (‘SensorID’ REFERENCES ‘Sensors’ (‘SensorID’);

COMMIT

OR mapping – data structure

The structure of the data is specified using classes and member variables

Null-ability, default values, primary and foreign keys are easily specified

1/19/2012 www.cac.cornell.edu 31

Specify the primary key

(otherwise one is generated)

This means varchar(100)

class SensorType (Model):

SensorTypeID = models.IntegerField (primary_key =True)

SensorTypeDescription = models.CharField(max_length=100, null =False)

SensorValue = models.IntegerField (null=False)

OR mapping – programming

The notation for dealing with an OR-mapped version is relatively simple but has

several important features

Transactions/sessions are managed by the mapper

Type checking is enforced by the language rather than at runtime by SQL

Changing data tables means changing the class structure

1/19/2012 www.cac.cornell.edu 32

Summary – databases

• Databases can be an effective way to improve your ability to share

and manage your data.

• Databases and database technologies are increasingly embedded

in a variety of systems and technology stacks to support easy use of

these systems are increasingly omnipresent.

• Database languages and tools can help reduce the amount of code

you manage in your projects.

1/19/2012 www.cac.cornell.edu 33

