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Motivation

« Simple programming model for Big Data
— Distributed, parallel — but hides this

Established success at petabyte scale
— Internet search indexes, analysis
— Google, yahoo facebook

Recently: 8000 nodes sort 10PB in 6.5 hours
Open source frameworks with different goals
— Hadoop, phoenix

Lots of research in last 5 years

— Adapt scientific computation algorithms to MapReduce,
performance analysis
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A programming model with some nice consequences

« Map(D) — list(Ki, Vi)
« Reduce(Ki, list(Vi)) — list(VT)
« Map: “Apply a function to every member of dataset” to

produce a list of key-value pairs

— Dataset: set of values of uniform type D
» Image blobs, lines of text, individual points, etc

— Function: transforms each value into a list of zero or more
key,value pairs of types Ki, Vi
 Reduce: Given a key and all associated values, do
some processing to produce list of type Vi

« EXxecution over data is managed by a MapReduce

framework
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Canonical example: Word Count

D = lines of text

Ki = Single Words

Vi = Numbers

Vf = Word/count pairs

Map(D) = Emit pairs containing each word and the
number 1

Reduce(Ki, list(Vi)) = Sum all the numbers in the list
associated with the given word. Emit the word and the
resulting count

Map(D) — list(Ki, Vi)
Reduce(Ki, list(Vi)) — list(Vf)
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Map(D) — list(Ki, Vi) Reduce(Ki, list(Vi)) — list(Vf)

Somehow need to group by keys so Reduce can be given all associated values!
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Opportunities for Parallelism

« Map and Reduce functions are independent
— No explicit communication between them

— Grouping phase between Map and Reduce is the only point
of data exchange

 Individual Map, Reduce results depend only on input
value.
— Order of data, execution does not matter in the end.

 |nput data read in parallel
« Output data written in parallel
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Read Map Group Reduce Write

Split (Combine) Partition
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Full Parallel Pipeline

Split — Divide data into parallel streams
« Use features of underlying storage technology
* File sharding, locality information, parallel data
1ner012 TOrmMats 10
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Full Parallel Pipeline

Read — Chop data into iterable units

 Most common in MapReduce world — Lines of Text

« Can be arbitrary simple or complex —integer arrays, pdf
oAecuments, mesh fragments, etc. 1
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Map — Apply a function, return a list of keys/values
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Full Parallel Pipeline

Combine — (optional) execute a “mini-reduce” on some set
of map output

* For optimization purposes

o May not be possible for every algorithm 13
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Full Parallel Pipeline

Group — Group all results by key, collapse into a list of
values for each key

* Need all intermediate values before this can complete
o Automatically performed by MapReduce framework
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Full Parallel Pipeline
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Partition — Send grouped data to reduce processes
« Typically, just a dumb hash to evenly distribute
« Opportunities for balancing or other optimization.
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Reduce — Run a computation over each aggregated result,
produce a final list of values
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Write — Move Reduce results to their final destination
e Could be storage, or another MapReduce process!
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Programming considerations

You must provide: Framework must provide:
« Map, Reduce functions « Grouping and data
shuffling

You may provide:
« Combine, if it helps Framework may provide:
« Partition function, if it * Read, Write

matters — For simple data such as

lines of text
« Split

— For parallel storage or data
formats it knows about
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Benefits

* Presents an easy-to-use programming model
— No synchronization, communication by individual
components. Ugly details hidden by framework.

« Execution managed by a framework

— Failure recovery (Maps/Reduces can always be re-run if
necessary)

— Speculative execution (Several processes operate on same
data, whoever finishes first wins)

— Load balancing
« Adapt and optimize for different storage paradigms
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Drawbacks

« Grouping/partitioning is serial!
— Need to wait for all map tasks to complete before any
reduce tasks can be run

e Some algorithms may be hard to conceptualize In
MapReduce.

« Some algorithms may be inefficient to express in terms
of Map Reduce
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Hadoop

* Open Source MapReduce framework in Java
— Spinoff from Nuch web crawler project

« HDFS — Hadoop Distributed Filesystem
— Distributed, fault-tolerant, sharding
« Many sub-projects
— Pig: Data-flow and execution language. Scripting for
MapReduce
— Hive: SQL-like language for analyzing data

— Mahout: Machine learning and data mining libraries
« K-means clustering, Singular Value Decomposition, Bayesian classification
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Hadoop

« User provides java classes for Map, Reduce functions
— Can subclass or implement virtually every aspect of
MapReduce pipeline or scheduling
« Streaming mode to STDIN, STDOUT of external map,
reduce processes (can be implemented in any
language)
— Lots of scientific data that goes beyond lines of text
— Lots of existing/legacy code that can be adapted/wrapped
Into a Map or Reduce stage.

stream -input /dataDir/dataFile
—-file myMapper.sh -mapper “myMapper.sh"
—-file myReducer.sh -reducer “myReducer.sh"

-output /dataDir/myResults
1/19/2012 22
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HDFS

« Data distributed among compute nodes
— Sharding: 64MB chunks
— Redundancy

Small number of large files

Not quite POSIX file semantics
— No random write, append

Write-once read many
Favor throughput over latency
Streaming/sequential access to files
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HDFS + MapReduce

Assume failure-prone nodes
— Data and computation recovery through redundancy
Move computation to data

— Data is local to computation, direct-attached storage to each
node

Sequential reads on large blocks

Minimal contention

— Simultaneous maps/reduces on a node can be controlled by
configuration
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Hadoop + HDFS vs HPC
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Hadoop in HPC environments

« Access to local storage can be problematic
— Local storage may not be available at all
— Even if so, long-term HDFS usually not possible

« HPC relies on global storage (e.g. Lustre) via high-
speed interconnect.

— What is meaning of “locality” in inherently non-local (but
parallel) storage?
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Hadoop @ TACC

* On Longhorn visualization cluster

« Special, local, persistent /hadoop filesystem on some
machines
— 48 nodes with 2TB HDFS storage/node

— 16 nodes with 1TB HDFS storage/node, extra large memory
(144GB memory)

« Modified hadoop distribution
— Starts HDFS on allocated nodes

« Special Hadoop queue
* By request only
« Detalls at
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Dark Matter Halo Detection on Longhorn

« 200 TB simulated astronomy data

« Explore algorithms for identifying halo candidates by
analyzing star density

« Compared compute parallel vs HDFS+MapReduce Data
Parallel
— ~57k data points/node/hr for compute parallel

— ~600k data points/node/hr data parallel with MapReduce +
HDFS
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BLAST at NERSC

« Streaming API

e |ssues with data format.

— FASTA: sequence represented on multiple lines

>some sort of header
ACTGCATCATCATCATCAT
GGGCTTACATCATCATCAT

— Lots of effort re-implementing basic data handling
components (Reader, possibly Split)

— Eventually re-formatted data so each sequence was on own
line
« Overall performance: Not significantly better than
existing parallel methods
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Still much to learn

« Most established patterns are from web and text
processing (inverted indexes, ranking, clustering, etc)

« Scientific data and algorithms much more varied
— Papers describing an existing problem applied to
MapReduce are common
 When does HDFS provide benefit over traditional global
shared FS?
— Tends to do poorly for small tasks, can be a crossover point
that needs to be found
* Lots of tuning parameters

— Data skew and heterogeneity may lead to long, inefficient

jobs.
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Why Hadoop?

« If you find the programming model simple/easy
+ If you have a data intensive workload

* If you need fault tolerance

 If you have dedicated nodes available

 If you like Java

 If you want to experiment.
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