e Cornell University

7 Center for Advanced Computing

Parallel I/0

Steve Lantz
Senior Research Associate
Cornell CAC

Workshop: Data Analysis on Ranger, January 19, 2012
Based on materials developed by Bill Barth at TACC

e Cornell University

Center for Advanced Computing

1. Lustre

Cornell University

Center for Advanced Computing

Lustre Components

All Ranger file systems are Lustre, which is a globally available
distributed file system.

Primary components are the MDS and OSS nodes. The OSSs
contain the data, while the MDS contains the filename-to-object map.

Metadata Server (MDS) Metadata Target (MDT)

S High Speed @ @
. Interconnect
Lustre Clients . @ @

(Ethernet, IB, etc.) 0SS 1
= OhjectStamge e Object Storage
- Servers (0SSs) Targets (OSTS)

http://wiki.lustre.org/manual/LustreManual18_HTML/IntroductionToLustre.html#50651242 pgfid-1287192

s Cornell University

7 Center for Advanced Computing

Parts of the Lustre System

The client (you) must talk to both the MDS and OSS servers in order
to use the Lustre system.

File 1/0O goes to one or more OSS’s. Opening flles listing directories,
etc. go to the MDS.

Clients
Front end to the |
Lustre file system is File open
a Logical Object
Volume (LOV) that Directory Operations, Eile 1/ and
simply appears like ‘hethdata, and file locking
any other large Sas st |

volume that would be
mounted on a node.

Recovery, file
status and file
creation

geer Cornell University

4

enter for Advanced Computing

Lustre File System and Striping

« Striping allows parts of files to be stored on different OSTs, in a
RAID-0 pattern.

— The number of objects is called the stripe_count.
— Objects contain "chunks" of data that can be as large as stripe_size.

| LOV |

Legend:

File A data -

File B data

Each gray area is one object

o7 Cornell University
@E) Center for Advanced Computing

Benefits of Lustre Striping

* Due to striping, the Lustre file system scales with the number of
OSS’s available.

« The capacity of a Lustre file system equals the sum of the capacities
of the storage targets.
— Benefit #1: max file size is not limited by the size of a single target.
— Benefit #2: 1/O rate to a file is the of the aggregate 1/O rate to the objects.

* Ranger provides 72 Sun I/O nodes, with an nominal data rate that
approaches 50GB/s, but this speed is split by all users of the system.

 Metadata access can be a bottleneck, so the MDS needs to have
especially good performance (e.g., solid state disks on some
systems).

Ejﬂ Cornell University

2J§ Center for Advanced Computing

Lustre File System (Ifs) Commands

« Among various Ifs commands are Ifs getstripe and Ifs setstripe.
« The Ifs setstripe command takes four arguments:

1fs setstripe
<file|dir> -s <bytes/OST> -o <start OST> -c <#OSTs>

File or directory for which to set the stripe.

The number of bytes on each OST, with k, m, or g for KB, MB or GB.
OST index of first stripe (-1 for filesystem default) .

Number of OSTs to stripe over.

> wn e

« So to stripe across two OSTs, you would call:

1fs setstripe bigfile -s 4m -o -1 -c 2

Ejﬂ Cornell University

2J§ Center for Advanced Computing

Getting Properties of File Systems and Files

 There are Ifs commands to tell you the quotas and striping for Lustre
file systems and files. Get the quota for SWORK with

1fs quota $WORK

« To see striping, try creating a small file and then using Ifs to get its
stripe information.

ls > file.txt

1fs getstripe file.txt

* The listing at the end of the results shows which OSTs have parts of
the file.

o7 Cornell University
@E) Center for Advanced Computing

A Striping Test to Try

You can set striping on a file or directory with the Ifs setstripe
command. First set it for a file:

1fs setstripe stripy.txt -s 4M -o -1 -c 6
1s -1a > stripy.txt
1fs getstripe stripy.txt

Now try the same thing for a directory. First create a directory, then
set its striping, then make a file within that directory.

mkdir s; cd s; 1lfs setstripe . -s 4M -0 -1 -c 6
1s -1a > file.txt
1fs getstripe file.txt

In both cases, you should see the file striped across six OSTSs.

ol JI,.{‘
veev Cornell University

:n,.-.‘_,_.- Center for Advanced Computing

2. Parallel /0 (MPI-2)

10

Ejﬂ Cornell University

2J§ Center for Advanced Computing

Parallel I/0 with MPI-10

Why parallel I/0O?

— |/O was lacking from the MPI-1 specification

— Due to need, it was defined independently, then subsumed into MPI-2
 What s parallel I/0O? It occurs when:

— multiple MPI tasks can read or write simultaneously,

— from or to a single file,

— in a parallel file system,

— through the MPI-IO interface.
« A parallel file system works by:

— appearing as a normal Unix file system, while

— employing multiple 1/O servers (usually) for high sustained throughput.

11

Ejﬂ Cornell University

2J§ Center for Advanced Computing

MPI-IO Advantages

« Two common alternatives to parallel MPI-10 are:
1. Rank O accesses a file; it gathers/scatters file data from/to other ranks.
2. Each rank opens a separate file and does 1/O to it independently.
« Alternative I/O schemes are simple enough to code, but have either
1. Poor scalability (e.g., the single task is a bottleneck) or
2. File management challenges (e.g., files must be collected from local
disk).
 MPI-IO provides
— mechanisms for performing synchronization,
— syntax for data movement, and
— means for defining noncontiguous data layout in a file (MPI datatypes).

12

o7 Cornell University
@E) Center for Advanced Computing

Noncontiguous Accesses

- Parallel applications commonly need to write distributed arrays to disk
— Better to do this to a single file, instead of multiple
* A big advantage of MPI I/O over Unix I/O is the ability to specify
noncontiguous accesses in both a file and a memory buffer.

— Read or write such a file in parallel by using derived datatypes within a
single MPI function call

— Let the MPI implementation to optimize the access

« Collective I/O combined with noncontiguous accesses generally
yields the highest performance

« HPC parallel I/O requires some extra work, but it
— potentially provides high throughput and
— offers a single (unified) file for viz and pre/post processing

13

e Cornell University

7 Center for Advanced Computing

Simple MPI-IO

Each MPI task reads/writes a single block:

[FILE
\ A A J

T Y Y
A A

PO [MEmOTy—
P1 [memory
P2 [memory
: P# Is a single processor with rank #.
P(n-1) [Memory-

14

o7 Cornell University
@E) Center for Advanced Computing

File Pointers and Offsets

* In simple MPI-10, each MPI process reads or writes a single block.
« 1/O functions must be preceded by a call to MPI1_File _open, which
defines both an individual file pointer for the process, and a shared
file pointer for the communicator.
* We have three means of positioning where the read or write takes
place for each process:
1. Use individual file pointers, call MPI_File_seek/read
2. Calculate byte offsets, call MPI_File_read_at
3. Access a shared file pointer, call MPI_File seek/read_shared
« Techniques 1 and 2 are naturally associated with C and Fortran,
respectively. In any case, the goal is roughly indicated by the
previous figure.

15

g5|® Cornell University
@E) Center for Advanced Computing

Reading by Using Individual File Pointers — C Code

MPI_File fh;
MPI_Status status;

MPI Comm rank (MPI COMM WORLD, &rank);
MPI Comm size (MPI_ COMM WORLD, &nprocs) ;

bufsize
nints

FILESIZE/nprocs;
bufsize/sizeof (int) ;

MPI File open(MPI COMM WORLD, "/pfs/datafile",
MPI_MODE RDONLY, MPI_ INFO NULL, &fh);

MPI File seek(fh, rank*bufsize, MPI SEEK SET);

MPI File read(fh, buf, nints, MPI INT, &status);

MPI File close(&fh);

16

g5|® Cornell University
@E) Center for Advanced Computing

Reading by Using Explicit Offsets — F90 Code

include 'mpif.h'’
integer status (MPI_STATUS SIZE)
integer (kind=MPI OFFSET KIND) offset

nints = FILESIZE/ (nprocs*INTSIZE)
offset rank * nints * INTSIZE

call MPI FILE OPEN(MPI_COMM WORLD, '/pfs/datafile’',

MPI_MODE RDONLY,
MPI INFO NULL, fh, ierr)
call MPI FILE READ AT(fh, offset, buf, nints,
MPI_ INTEGER, status, ierr)
call MPI_FILE CLOSE (fh, ierr)

&
&

17

o7 Cornell University
@E) Center for Advanced Computing

Operations with Pointers, Offsets, Shared Pointers

 MPI_File_open flags:

— MPI_MODE RDONLY (read only)

- MPI_MODE WRONLY (write only)

- MPI_MODE RDWR (read and write)

— MPI_MODE CREATE (create file if it doesn't exist)

— Use bitwise-or ‘| in C, or addition ‘+” in Fortran, to combine multiple flags
* To write into a file, use MPI_File_write or MPI_File write_at, or...
« The following operations reference the implicitly-maintained shared
pointer defined by MPI_File _open
— MPI File read shared
— MPI File write shared
- MPI File seek shared

18

GD_) Cornell University

@

Center for Advanced Computing

File Views

 Aview is a triplet of arguments (displacement, etype, filetype) that is
passed to MPI_File set_view.

— displacement = number of bytes to be skipped from the start of the file
— etype = unit of data access (can be any basic or derived datatype)
— filetype = specifies layout of etypes within file

* Note that etype is considered to be the elementary type, but since it
can be a derived datatype, there's really nothing elementary about it.

* In the file view depicted on the next slide, etype is double precision,
filetype is a vector type, and displacement is used to stagger the
starting positions by MPI rank.

19

g5|® Cornell University
@E) Center for Advanced Computing

Example #1: File Views for a Four-Task Job

. etype = MPI_DOUBLE PRECISION elementary datatype

. filetype = myPattern derived datatype, sees every 41 DP
head of file VIEW: each task repeats myPattern

displacement with different displacements

PR 1] B e+« task0
PN *** taskl
PN e+« task?2

LG e > ¢eo taSk3

[[|| -+ file

20

g5|® Cornell University
@E) Center for Advanced Computing

File View Examples

« |n Example 1, we write contiguous data into a contiguous block

defined by a file view.
— We give each process a different file view so that together, the processes

lay out a series of blocks in the file, one block per process.

* In Example 2, we write contiguous data into two separate blocks
defined by a different file view.
— Each block is a contiguous type in memory, but the pair of blocks is a
vector type in the file view.
— We again use displacements to lay out a series of blocks in the file, one
block per process, in a repeating fashion.

21

e Cornell University

7 Center for Advanced Computing

Example #1: File Views for a Four-Task Job
1 block from each task, written in task order

PO Pl P2 P3

File
MPI File set wview assigns regions of the file to separate processes

22

Ejﬂ Cornell University

2J§ Center for Advanced Computing

Code for Example #1

#define N 100
MPI Datatype arraytype;
MPI Offset disp;

disp = rank*sizeof (int) *N; etype = MPI INT;
MPI Type contiguous (N, MPI INT, &arraytype);
MPI Type commit (&arraytype) ;

MPI File open (MPI COMM WORLD, "/pfs/datafile",
MPI MODE CREATE | MPI MODE RDWR,
MPI INFO NULL, &fh);

MPI File set view(fh, disp, etype, arraytype,
"native", MPI INFO NULL) ;

MPI File write(fh, buf, N, etype, MPI STATUS IGNORE) ;

23

e Cornell University

Center for Advanced Computing

Example #2: File Views for a Four-Task Job

2 blocks from each task, written in round-robin fashion to a file

PO Pl P2

~
-~
~—a_

File

MPI File set wview assigns regions of the file to separate processes

24

Ejﬂ Cornell University

2J§ Center for Advanced Computing

Code for Example #2

int buf [NW*2];
MPI File open(MPI_COMM WORLD, "/data2",
MPI_MODE RDWR, MPI_INFO NULL, &fh);
/* want to see 2 blocks of NW ints, NW*npes apart */
MPI Type vector (2, NW, NW*npes, MPI INT, &fileblk);
MPI Type commit (&fileblk) ;
disp = (MPI_Offset)rank*NW*sizeof (int);
MPI File set view(fh, disp, MPI INT, fileblk,
"native", MPI_INFO NULL) ;

/* processor writes 2 'ablk', each with NW ints */
MPI Type contiguous (NW, MPI INT, &ablk);
MPI Type commit (&ablk) ;
MPI File write(fh, (void *)buf, 2, ablk, &status);

25

(EFTU‘ Cornell University

2J§ Center for Advanced Computing

Collective I/O In MPI

« A critical optimization in parallel I/0

* Allows communication of “big picture” to file system

* Framework for 2-phase 1/O, in which communication precedes 1/O

* Preliminary communication can use MPI machinery to aggregate data

« Basicidea: build large blocks, so that reads/writes in I/0O system will
be more efficient

Small individual -
|

requests
- N Large collective

-/ aCCessS

26

Ejﬂ Cornell University

2J§ Center for Advanced Computing

MPI Routines for Collective I/O

Typical routine names:
- MPI File read all
- MPI File read at all, elC.

 The _all indicates that all processes in the group specified by the
communicator passed to MPI_File _open will call this function

« Each process provides nothing beyond its own access information,
Including its individual pointer
— The argument list is therefore the same as for the non-collective functions
« Collective I/O operations work with shared pointers, too
— The general rule is to replace _shared with _ordered in the routine name

— Thus, the collective equivalent of MPI_File_read shared is
MPI_File read ordered

27

(EFTU‘ Cornell University

2J§ Center for Advanced Computing

Advantages of Collective I/O

« By calling the collective I/O functions, the user allows an
Implementation to optimize the request based on the combined
requests of all processes

 The implementation can merge the requests of different processes
and service the merged request efficiently

« Particularly effective when the accesses of different processes are
noncontiguous and interleaved

28

o7 Cornell University
@E) Center for Advanced Computing

Collective Choreography

LT T 177 DR
Original memory layout on 4 processors

MPI collects in temporary buffers

e

r Y Y Y Y

[N [N [A [e
then writes to File layout

29

g5|® Cornell University
@E) Center for Advanced Computing

Asynchronous Operations

Asynchronous operations give the system even more opportunities to
optimize /0.

For each noncollective I/O routine, there is an nonblocking variant.

 MPI_File iwrite and MPI_File_iread, e.g., are nonblocking calls.

« The general naming convention is to replace “read” with “iread”, or
“‘write” with “iwrite”.

* These nonblocking routines are analogous to the nonblocking sends
and receives in MPI point-to-point communication.

« Accordingly, these types of calls should be terminated with MPI_Wait.

30

o7 Cornell University
@E) Center for Advanced Computing

Collective Asynchronous Operations

For each collective 1/O routine, there is a split variant.
« A collective I/O operation can begin at some point and end at some
later point.

« When using file pointers:

— MPI File read all begin/end

— MPI File write all begin/end
* When using explicit offsets:

— MPI File read at all begin/end

— MPI File write at all begin/end
 When using shared pointers:

— MPI File read ordered begin/end

— MPI File write ordered begin/end

31

o7 Cornell University
@E) Center for Advanced Computing

Passing Along Hints to MPI-10

MPI_Info info;
MPI_Info_create(&info);

/* no. of I/0 devices to be used for file striping */
MPI Info set(info, "striping factor", "4");

/* the striping unit in bytes */
MPI Info set(info, "striping unit", "65536");

MPI File open(MPI COMM WORLD, "/pfs/datafile",
MPI MODE CREATE | MPI MODE RDWR,
info, &fh);

MPI Info free(&info);

32

Cornell University

Center for Advanced Computing

Examples of Hints (also used in ROMIO)

striping unit
striping factor
cb buffer size
cb nodes

ind rd buffer size

ind_w:_buffe:_size

start iodevice
pfs_svr buf
direct read

direct write

\

—

F

\

MPI-2 predefined hints

New algorithm
parameters

Platform-specific hints

33

Ejﬂ Cornell University

2J§ Center for Advanced Computing

MPI-IO Summary

« MPI-10O has many features that can help users achieve high
performance
« The most important of these features are:
— the ability to specify honcontiguous accesses
— the collective I/O functions
— the ability to pass hints to the implementation
« |In particular, when accesses are noncontiguous, users must:
— Create derived datatypes
— Define file views
— Use the collective I/O functions

« Use of these features is encouraged, because |/O is expensive! It's
best to let the system make tuning decisions on your behalf.

34

Cornell University
Center for Advanced Computing

Optional Lab

Let’s run an MPI-10 program that writes in parallel to a single file and
test how the speed depends on striping. First, compile the code.

tar xvfz ~tg459572/LABS/mpiio.tgz

cd

mpiio; make

Then examine ranger.sh. It performs the same striping commands
you tried earlier. Here is what the script does:

Creates a working directory on $SCRATCH.
Copies mpiio writing and reading programs into that directory.

Runs the writing and reading test programs with default striping, taking
timings in the process.

Repeats the tests for 8-way and 2-way striping.
Deletes the working directory.

35

GD_) Cornell University

@

Center for Advanced Computing

Running the Optional Lab

« Submit ranger.sh with gsub. Don’t forget to set the account to the
correct account for this class.

« Some guestions to ponder while waiting for the scheduler: what is the
default stripe for SHOME, $WORK, and $SCRATCH? Do these
choices make sense?

« After the job completes, you'll find the reading and writing rates for
different stripe counts in the standard output that comes back from
the job. Look for ====,

« Submit again and look for timing variability. If you like, you can
change the BLOCKS variable to set a new size for the MPI-10 file
prior to re-submitting.

« Credit: the MPI-IO program comes from
http://beige.ucs.indiana.edu/1590/node86.html.

36

http://beige.ucs.indiana.edu/I590/node86.html

