
Introduction to Python

for Research Workflows

David A. Lifka, Ph.D.

Cornell Center for Advanced Computing

January 20, 2012

1/20/2012 www.cac.cornell.edu 1

Research Computing Ecosystem

• Desktop Tools

– Editors

– Spreadsheets

– Mathematics & statistical packages

• Modeling & Simulation

– Parallel programming

• Multi-process

• Multi-core

– Batch scheduling

– Cloud computing

• Distributed Resources and Collaboration

– Accessing remote data sources

– Using remote instrumentation

– Moving data & programs

• Data Intensive Science

1/20/2012 www.cac.cornell.edu 2

Data Intensive Computing Applications

Modern Research is Producing Massive Amounts of Data
– Microscopes

– Telescopes

– Gene Sequencers

– Mass Spectrometers

– Satellite & Radar Images

– Distributed Weather Sensors

– High Performance Computing (especially HPC Clusters)

Research Communities Rely on Distributed Data Sources
– Collaboration

– Virtual Laboratory’s

– Laboratory Information Management Systems (LIMS)

New Management and Usage Issues
– Security

– Reliability/Availability

– Manageability

– Data Locality – You can’t ftp a petabyte to your laptop….

1/20/2012 www.cac.cornell.edu 3

Why Python?

• Fast & easy to learn

• Popular – many researchers use it

• Wealth of open source libraries and examples

• Convenient for rapid prototyping of complex computer tasks

• Great for “gluing together” other programs and tasks into a custom

workflow

• Time-saver for repetitive tasks

• Portable (runs on most computing platforms)

1/20/2012 www.cac.cornell.edu 4

Some Recommendations

• Enthought Python

– http://www.enthought.com/

• O’Reilly

– http://oreilly.com/python/index.html

• Lifka’s course web site

– http://www.cac.cornell.edu/~lifka/STSCI4060/STSCI4060.htm

1/20/2012 www.cac.cornell.edu 5

Hello World!

• First line of a script is the path to the shell executable

– Should be set to the path of the executable on the system the script will be run on.

• This is not needed on Microsoft Windows-based systems, instead, file extensions are

“associated” with the correct executable.

– .py -> Python

• Scripts can be run like standard executables if:

– On UNIX systems you set appropriate “execute” permissions:

• chmod u+x helloworld.pl

– On Window-based systems the extensions are properly “associated”

• Scripts can also be run by first invoking the scripting executable and providing a path

the script you want it to run:

– python ~lifka/scripts/helloworld.py

1/20/2012 www.cac.cornell.edu 6

Lab 1: Hello World & 2 methods of running python

1/20/2012 www.cac.cornell.edu 7

What We’ll Cover Today

• Data types & associated operators

• Interactive input

• Lists & dictionaries

• Logic & looping structures

• Reading & writing files

• Running & interacting with applications outside a Python script

• Using FTP from Python

1/20/2012 www.cac.cornell.edu 8

Numeric Data Types
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example1.py

a = 2

b = 3

c = a + b

print "a + b = ", c

print a, "+", b, "=",c

print "Binary:", bin(a), "+", bin(b), "=", bin(c)

print "Octal:", oct(a), "+", oct(b), "=", oct(c)

print "Hexadecimal:", hex(a), "+", hex(b), "=", hex(c)

using octal formatting

print "%03o + %03o = %03o" % (a, b, c)

using hexadecimal formatting

print "%03x + %03x = %03x" % (a, b, c)

print "Complex numbers:"

a = 3

b = 4j

c = a + b

print "real =", c.real, "imaginary =", c.imag, "cartesian style =", a, "+", b

a = 3.14159

b = 2

c = a * b

print "a * b = ", c

1/20/2012 www.cac.cornell.edu 9

Numeric Operators
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example2.py

print "Add:", a, "+", b, "=",a + b

print "Subtract:", a, "-", b, "=",a – b

print "Divide:", a, "/", b, "=",a / b

print "Multiply:", a, "*", b, "=",a * b

print "Exponent:", a, "**", b, "=",a ** b

print "Modulus:", a, "%", b, "=",a % b

print a, "+= 10 =",

a += 10

print a

print a, "-= 10 =",

a -= 10

print a, "*= 10 =",

a *= 10

print a

print a, "/= 10 =",

a /= 10

print a

print a, "%= 10 =",

a %= 10

print a

1/20/2012 www.cac.cornell.edu 10

Numeric Comparisons
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example3.py

a = 3

b = 3

c = 2

if (a == b): print a, "==", b

if (a != c): print a, "!=", c

if (a > c): print a, ">", c

if (c < a): print c, "<", a

if (a >= c): print a, ">=", c

if (a >= b): print a, ">=", b

if (c <= a): print c, "<=", a

if (a <= b): print a, "<=", b

1/20/2012 www.cac.cornell.edu 11

Interactive Input
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example4.py

import sys

print “hit enter to continue”

wait = sys.stdin.readline()

print “enter an integer:”,

a = int(sys.stdin.readline())

print “Integer: “, a

print “enter a float:”,

b = float(sys.stdin.readline())

print “Float: “, b

1/20/2012 www.cac.cornell.edu 12

Strings

firstname = "David”

lastname = "Lifka"

print firstname + " " + lastname

1/20/2012 www.cac.cornell.edu 13

String Operators
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example5.py

plus "+"

my_name = firstname + " " + lastname

print my_name

length "len()"

print "len(my_name) = ",len(my_name)

Sub-strings

print "Remove 1 character from the front of string: my_name[1:len(my_name)] = ", my_name[1:len(my_name)]

print "Remove all but the final character of string: my_name[len(my_name)-1:len(my_name] = ",

my_name[len(my_name)-1:len(my_name)]

my_name = firstname + " " + lastname

print "Remove the final 5 characters from", my_name, ": my_name[0:len(my_name)-5] = ",

my_name[0:len(my_name)-5]

print "Remove all but the first three characters from", my_name, ": my_name[0:3] = ", my_name[0:3]

index()

my_name = firstname + " " + lastname

print "my_name.index('L') = ", my_name.index('L')

rindex()

print "my_name.rindex('a') = ", my_name.rindex('a')

print "my_name[my_name.index('L'):my_name.rindex('a')+1] =

",my_name[my_name.index('L'):my_name.rindex('a')+1]

1/20/2012 www.cac.cornell.edu 14

String Comparisons
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example6.py

apples = "apples”

oranges = "oranges”

bananas = "bananas”

== (equals)

if (apples == "apples"):

 print ”apples == " + apples

!= (not equals)

if (apples != oranges):

 print apples + " != " + oranges

> (greater than)

if (bananas > apples):

 print bananas + " > " + apples

< (less than)

if (apples < oranges):

 print apples + " < " + oranges

>= (greater than or equals)

if (oranges >= apples):

 print oranges + " >= " + apples

<= (less than or equals)

if (bananas <= oranges):

 print bananas + " <= " + oranges + "\n”

1/20/2012 www.cac.cornell.edu 15

Lab 2: Data Types & Operators
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/lab2.py

• Write Python script that does the following:

– Prompts for an number “a” and number “b” and then prints our “c” for

each of the following cases (a+b), (a-b), (a*b), (a/d) & (a%b)

– Try the same where the numbers are integers and floats

• Now do the following with strings:

– Prompt for a string “a” and a string “b”

– Print out the length of each string

– Concatenate the two strings into on

– Use index to separate the two strings again

1/20/2012 www.cac.cornell.edu 16

Lists - 1
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example7.py

1 dimensional List of numbers

a = [0,1,2,3.14159,4,5,6,7,8,9]

print a

for i in range(len(a)):

 print “a[",i,"] =",a[i]

1 dimensional List of strings

animals = ["cats","dogs", "birds", "fish"]

for a in range(len(animals)):

 print “animals[",a,"] =",animals[a]

2 dimensional List of numbers

A2D = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]

for i in range(4):

 print A2D[i]

Clear contents of the List

A2D = []

c=0

for i in range(4):

 A2D.append([])

 for j in range(4):

 c += 1

 A2D[i].append©

 print A2D[i][j],"\t”,

 print

1/20/2012 www.cac.cornell.edu 17

Lists - 2
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example7.py

1/20/2012 www.cac.cornell.edu 18

for i in range(4):

 for j in range(4):

 print A2D[i][j],"\t",

 print

2 dimensional List of strings

A2D = [["c","a","t","s"],["d","o","g","s"],["f","i","s","h"],["b","i","r","ds"]]

for i in range(4):

 for j in range(4):

 print A2D[i][j],

 print

using len

for i in range(len(A2D)):

 for j in range(len(A2D[i])):

 print A2D[i][j],

 print

animals = ["cats","dogs", "birds", "fish"]

more_animals = ["cows","horses","sheep"]

extend

animals.extend(more_animals)

print animals

insert (indexes start at 0)

animals.insert(3,"mice")

print animals

Lists - 3
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example7.py

1/20/2012 www.cac.cornell.edu 19

remove

animals.remove("mice")

print animals

index

animals.insert(3,"mice")

animals.insert(5,"mice")

print animals

print "\"mice\" first found at: ", animals.index("mice")

count

print "\"mice\" found: ", animals.count("mice"), "times"

sort in place

animals.sort()

print animals

reverse - reverse sort in place

animals.reverse()

print animals

delete

del animals[3]

print animals

Lists - 4
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example7.py

1/20/2012 www.cac.cornell.edu 20

Lists as stacks (Last In First Out)

Build a stack using append

stack = []

for i in range (5):

 stack.append(i)

 print "pushing " + str(stack[i])

now pop the elements off the stack

for i in range (len(stack)):

 print "popping " + str(stack.pop())

Lists as queues (First In First Out)

queue = []

queue = deque(queue)

for i in range (5):

 queue.append(i)

 print "queuing " + str(queue[i])

now elements from the queue using popleft()

for i in range (len(queue)):

 print "dequeuing " + str(queue.popleft())

Dictionaries - 1
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example8.py

Dictionaries are essentially (Associative Arrays)

Names = {'dal16':'David Lifka','rda1':'Resa Alvord','shm7':'Susan Mehringer','plr5':'Paul Redfern'}

keys

for key in Names.keys():

 print key+"\t"+Names[key]

del - deletes a value from a Dictionary

del Names['dal16']

for key in Names.keys():

 print key+"\t"+Names[key]

values

for value in Names.values():

 print value

has_keys - test whether a dictionary key is present

if Names.has_key('plr5'):

 print "plr5 exists"

if Names.has_key('dal16'):

 print "dal16 exists"

else:

 print "dal16 does not exist"

iteritems to retrieve the key and the value at the same time

for k,v in Names.iteritems():

 print k,v

1/20/2012 www.cac.cornell.edu 21

Dictionaries - 2
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example8.py

netids = {'dal16':'David Lifka','rda1':'Resa Alvord','shm7':'Susan Mehringer','plr5':'Paul Redfern'}

for id in netids.keys():

 print id,"\t",netids.get(id)

Use sort() to sort dictionary by keys

sorted_keys = netids.keys()

sorted_keys.sort()

for id in sorted_keys:

 print id,"\t",netids[id]

23. Use sort with a lambda function to sort dictionary by values

students = netids.items()

students.sort(lambda (k1,v1),(k2,v2):cmp(v1,v2))

for id,name in students:

 print id + "\t" + name

1/20/2012 www.cac.cornell.edu 22

Logic & Looping Structures
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example9.py

if, elif, else

a = 5

b = 10

if (a < b):

 print a,"<",b

if (b < a):

 print b,"<",a

else:

 print b,"is not <",a

if (b < a):

 print b,"<",a

elif (b == a):

 print b,"==",a

else:

 print b,"must be >",a

1/20/2012 www.cac.cornell.edu 23

for loops

for i in range(10):

 print i

for i in range(0,100,10):

 print i

for i in range(10,0,-1):

 print i

while loop i = 0

while(i < 10):

 i += 1

 print i

infinite loops

#for i in itertools.count():

print "here"

#while (true):

print "here"

Lab 4: Matrix Multiply
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/lab3.py

from numpy import *

A = N x R

B = R x M

C = N x M

N = 2

R = 3

M = 4

a = zeros((N,R))

a[0] = [1, 2, 4]

a[1] = [2, 6, 0]

b = zeros((R,M))

b[0] = [4, 1, 4, 3]

b[1] = [0, -1, 3, 1]

b[2] = [2, 7, 5, 2]

c = zeros((N,M))

compute c

print a, b & c

now try using numpy…

d = array([[1, 2, 4],[2, 6, 0]])

D = matrix(d)

e = array([[4, 1, 4, 3],[0, -1, 3, 1],[2, 7, 5, 2]])

E = matrix(e)

print D * E

1/20/2012 www.cac.cornell.edu 24

Reading & Writing Files
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example10.py

import random

import os

1. open a file for writing (note >> open a file for append)

out = open('columns.txt', 'w')

for i in range(10):

 a = random.random()

 b = random.random()

 c = random.random()

 out.write(str(a)+"\t"+str(b)+"\t"+str(c)+"\n")

out.close()

open a file for reading

input = open('columns.txt', 'r')

for i in input:

 i = i[:-1]

 (a, b, c) = i.split("\t")

 print "a = ",a,"\tb =",b,"\tc =",c

input.close()

os.unlink("columns.txt”)

1/20/2012 www.cac.cornell.edu 25

Running & Interacting with Applications
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example11.py

import sys,os

command = "ls -al"

child = os.popen(command)

for i in child.readlines():

 i = i[:-1]

 sys.stdout.write(str(i)+"\n")

command = "/Applications/TextEdit.app/Contents/MacOS/TextEdit"

child = os.popen(command)

1/20/2012 www.cac.cornell.edu 26

Using FTP from Python
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example12.py

from ftplib import FTP

import getpass

Ftp example

print ”Using ftp”

server = "arecibo.tc.cornell.edu"

ftp = FTP(server)

print "Username: ",

user = sys.stdin.readline()

user = user[:-1]

pswd = getpass.getpass()

ftp.login(user, pswd)

ftp.cwd("/legacypulsars/Data/pulsars/")

ftp.retrbinary('RETR J2235+1506.52396.043', open('J2235+1506.52396.043', 'wb').write)

ftp.quit()

1/20/2012 www.cac.cornell.edu 27

Web Download Example
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/example13.py

Web download example

import urllib # - For Web Download Example

print "Downloading data via http"

url = urllib.urlopen("http://www.cac.cornell.edu/~lifka/Downloads/Ranger/data.csv")

dump = url.readlines()

for r in range(len(dump)):

 print str(r+1)+">"+str(dump[r]),

 line = dump[r]

 line = line[:-1]

 (a, b, c) = line.split("\t")

 print a, b, c, ";",

 print int(a) + int(b) + int(c)

1/20/2012 www.cac.cornell.edu 28

Lab 5: Reading & Parsing Data from the Web
http://www.cac.cornell.edu/~lifka/Downloads/Ranger/lab4.py

Some hints

line = line[:-1] # what does this do?

(a, b, c) = line.split("\t”) # what types are a, b & c?

1) For each row read print a, b & c followed by a “:” followed by the sum of a, b & c

1/20/2012 www.cac.cornell.edu 29

Thank You!

• Questions?

1/20/2012 www.cac.cornell.edu 30

