Preparing for Highly Parallel, Heterogeneous Coprocessing

Steve Lantz
Senior Research Associate
Cornell CAC

Workshop: Parallel Computing on Ranger and Lonestar
May 17, 2012
What Are We Talking About Here?

- Hardware trend since around 2004: processors gain more cores (execution engines) rather than greater clock speed
 - IBM POWER4 (2001) became the first chip with 2 cores, 1.1–1.9 GHz; meanwhile, Intel’s single-core Pentium 4 was a bust at >3.8 GHz
 - Top server and workstation chips in 2012 (Intel Xeon, AMD Opteron) now have 4, 8, even 16 cores, running at 1.6–3.2 GHz
- Does it mean Moore’s Law is dead? No!
 - Transistor densities are still doubling every 2 years
 - Clock rates have stalled at < 4 GHz due to power consumption
 - Only way to increase flop/s/watt is through greater on-die parallelism…
- *If 1 chip holds 10s of the best cores, why not 100s of weaker ones?*
 - Around 2007–8, “Cell” chips had 1 main and 8 synergistic processors; but then something else came along…
Highly Parallel Hardware Is in PCs Already

- High-end graphics processing units (GPUs) contain 100s of thread processors and RAM enough to rival CPUs in compute capability
- GPUs are being further tailored for HPC
- Lonestar example: NVIDIA Tesla M2070
 - 448 CUDA cores @ 1.15 GHz
 - 6GB dedicated memory
 - 1.03 Tflop/s peak SP rate
 - 238W power consumption
- Initially there were hardware obstacles to using GPUs for general calculations, but these have been overcome
 - ECC memory, double precision, IEEE-compliant arithmetic are built in
 - What about software…?
General Purpose Computing on GPUs (GPGPU)

• Given the right software tools, developers can write code allowing the GPU to perform calculations usually handled by the CPU
 – Stream processing: GPU executes a code “kernel” on a stream of inputs
 – Exploits the GPU’s rendering pipeline, designed to transform and shade a stream of vertices: highly parallel, very energy efficient
 – Works well if kernel is multithreaded, vectorized (SIMD), pipelined

• NVIDIA CUDA (2006) is the forerunner in this area
 – SDK + API that permits programmers to use the C language to code algorithms for execution on NVIDIA GPUs (must be compiled with nvcc)

• OpenCL (2008) is a more recent, open standard originated by Apple
 – C99-based language + API that enables data-parallel computation on GPUs as well as CPUs
 – Actively supported on Intel, AMD, NVIDIA, ARM platforms
Not All Applications Are Suitable for GPGPU

• Workload must be compute intensive, i.e., any data item fetched from main memory must take part in several GPU operations
 – Reason: to reach the GPU, data travel over a “slow” PCIe interconnect
• Workload must be decomposed into many small, independent units
 – Reason: GPU is only effective when all thread processors are kept busy
• Nontrivial (re)coding may be needed, based on a specialized API
 – Good performance depends on very specific tuning to the hardware (cache sizes, etc.)
 – Resulting code is far less portable due to the API and special tuning
 – May be avoided if a suitable kernel or library already exists
• Is there a better way for numerically-intensive applications to take advantage of hardware trends?
The Intel Approach: MIC

- MIC = Many Integrated Cores = a “coprocessor” on a PCIe card that features >50 compute cores
 - Represents Intel’s response to GPGPU, especially NVIDIA’s CUDA
 - Incorporates lessons learned from the former “Larrabee” development effort (which never became a product)
 - Answers the question: if 8 modern Xeon cores fit on a die, how many Pentium III’s would fit?
- Addresses the API problem: standard x86 instructions are supported
 - Includes 64-bit addressing
 - Other recent x86 extensions may not be available
 - Special instructions are added for an extra-wide (512-bit) vector register
- MIC executables are built using familiar Intel compilers, libraries, and analysis tools
MIC = A Teraflop/s System on a Chip!

• 1996: ASCI Red, first system to achieve 1 Tflop/s sustained
 • 72 cabinets

• 2011: Knights Corner, first Tflop/s system on a chip
 • 1 PCIe slot
The Knights Ferry (KNF) Coprocessor

- KNF is the early development platform for the Intel MIC architecture
 - Chip + memory on a PCI Express card
 - Up to 8MB coherent shared L2 cache
 - Up to 32 cores, 4 threads/core, < 1.2 GHz
 - SIMD vector unit (8-DP floats wide)
 - In-order instruction pipeline
- Linux Micro OS (μOS) runs on MIC
 - Small OS memory footprint
 - Basic functionality (I/O, standards Unix commands, etc.)
 - Users can telnet to MIC
- RHEL 6.0, 6.1, 6.2 or SUSE 11 SP1 runs on host
- Details for Knights Corner (KNC) have yet not been disclosed
Typical Configuration of a Future Stampede Node

- Host with dual Intel Xeon “Sandy Bridge”
- PCIe card with Intel “Knights Corner”

* can’t do this with a Lonestar GPU node, e.g., which is otherwise similar
First Large-Scale MIC System: TACC Stampede

System specs from news release

- 10PF+ peak performance in initial system (1Q 2013)
 - 2PF conventional cluster (Sandy Bridge)
 - 8PF complementary coprocessors (KNC)
- 15PF+ after upgrade
- 14PB+ disk, 200TB+ RAM
- 56Gb/s FDR InfiniBand, fat-tree interconnect, ~75 miles of cables
 - Compare Lonestar: 32Gb/s QDR (effective)
- Nearly 200 racks of compute hardware
- Integrated shared memory and remote visualization subsystems
- Total concurrency approaching 500,000 cores
Construction Is Already Under Way at TACC

Left: water chiller plant; right: addition to main facility
Programming Models for Stampede

Offload Execution
• Directives indicate data and functions to send from CPU to MIC for execution
• Unified source code
• Code modifications required
• Compile once with offload flags
 – Single executable includes instructions for MIC and CPU
• Run in parallel using MPI and/or scripting, if desired

“Symmetric” Execution
• Message passing (MPI) on CPUs and MICs alike
• Unified source code
• Code modifications optional
 – Assign different work to CPUs vs. MICs
 – Multithread with OpenMP for CPUs, MICs, or both
• Compile twice, 2 executables
 – One for MIC, one for host
• Run in parallel using MPI
Strategies for HPC Codes

- MPI code
 - No change – run on CPUs, MICs, or both
 - Expand existing hybrids; or, add OpenMP offload
 - Build on libraries like Intel MKL, PETSc, etc.
Pros and Cons of MIC Programming Models

• Offload engine: **accelerator for host**
 – **Pros:** distinct hardware gets distinct role; programmable via simple calls to a library such as MKL, or via directives (we’ll go into depth on this)
 – **Cons:** most work travels over PCIe; difficult to retain data on card

• “Symmetric” #1: **heterogeneous MPI cores**
 – **Pros:** MPI works for all cores (though 1 MIC core < 1 server core)
 – **Cons:** memory is insufficient to give each core a µOS plus lots of data; fails to take good advantage of shared memory; PCIe is a bottleneck

• “Symmetric” #2: **heterogeneous SMPs** (symmetric multiprocessors)
 – **Pros:** MPI/OpenMP works for both host and MIC; efficient use of limited PCIe bandwidth and MIC memory due to single message source/sink
 – **Cons:** hybrid programming is already tough on homogeneous SMPs; not clear whether existing OpenMP-based hybrids scale to 50+ cores
Using Compiler Directives to Offload Work

• OpenMP’s directives provide a natural model
 – 2010: OpenMP working group starts to consider accelerator extensions
 – Related efforts are launched to target specific types of accelerators…

• LEO, Language Extensions for Offload
 – Intel moves forward to support processors and co-processors, initially

• OpenACC
 – PGI moves forward to support GPUs, initially

• Will OpenMP 4.0 produce a compromise among all the above?
 – Clearly desirable, but it’s difficult
 – Other devices exist: network controllers, antenna A/D, cameras…
 – Exactly what falls in the “accelerator” class? How diverse is it?
OpenMP Offload Constructs: Base Program

```c
#include <omp.h>
#define N 10000

void foo(double *, double *, double *, int);
int main()
{
    int i; double a[N], b[N], c[N];
    for(i=0;i<N;i++) { a[i]=i; b[i]=N-1-i;}

    ...

    foo(a,b,c,N);
}

void foo(double *a, double *b, double *c, int n){
    int i;

    for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; }
}
```

- Objective: offload foo to a device
- Use OpenMP to do the offload
OpenMP Offload Constructs: Requirements

- Direct compiler to offload function or block
- “Decorate” function and prototype
- Usual OpenMP directives work on device

```c
#include <omp.h>
#define N 10000
#pragma omp <offload_function_spec>
void foo(double *, double *, double *, int );
int main(){
  int i; double a[N], b[N], c[N];
  for(i=0;i<N;i++){ a[i]=i; b[i]=N-1-i;}

  ...
  #pragma omp <offload_this>
  foo(a,b,c,N);
}
#pragma omp <offload_function_spec>
void foo(double *a, double *b, double *c, int n){
  int i;
  #pragma omp parallel for
  for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }
```
OpenMP Offload Constructs: Data Requirements

- Data must be moved to and from the device
- Synchronous model (move data to device at dispatch of execution, move back afterward)
- Control of data locality is new to OpenMP (and OpenACC)

```c
#include <omp.h>
define N 10000
#pragma omp <offload_function_spec>
void foo(double *, double *, double *, int );
int main(){
    int i; double a[N], b[N], c[N];
    for(i=0;i<N;i++) { a[i]=i; b[i]=N-1-i;}
    ...
    #pragma omp <offload_this> <data_clause>
    foo(a,b,c,N);
}
#pragma omp <offload_function_spec>
void foo(double *a, double *b, double *c, int n){
    int i;
    #pragma omp parallel for
    for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; } }
```
OpenMP Offload Constructs: Asynchronicity

- Offloaded “region” can be done asynchronously
- Moving data asynchronously is another important option

```c
#include <omp.h>
#define N 10000
#pragma omp offload_function_spec
void foo(double *, double *, double *, int );
int main(){
    int i; double a[N], b[N], c[N];
    for(i=0;i<N;i++) { a[i]=i; b[i]=N-1-i;}
    #pragma omp offload_data <async>
    ...
    #pragma omp offload_this <async> <data>
    foo(a,b,c,N);
}
#pragma omp offload_function_spec
void foo(double *a, double *b, double *c, int n){
    int i;
    #pragma omp parallel for
    for(i=0;i<n;i++) { c[i]=a[i]*2.0e0 + b[i]; }
}```
Two Types of MIC Parallelism (Both Are Needed)

- **OpenMP (offloading to MIC)**
  - Work Level Parallelization (threads)
  - Requires management of asynchronous “processes”
  - It’s all about sharing work and scheduling
- **Vectorization**
  - “Lock step” Instruction Level Parallelization (SIMD)
  - Requires management of synchronized instruction execution
  - It’s all about finding simultaneous operations
- **To fully utilize MIC, both types of parallelism should be identified and exploited**
Vectorization Matters Too

• Vectorization, or SIMD processing, enables simultaneous, independent operation on multiple data operands with a single instruction. (Large arrays should provide a constant stream of data.)

• Vector reawakening
  – Pre-Sandy Bridge – DP* vector units are only 2 wide (SSE)
  – Sandy Bridge – DP* vector units are 4 wide (AVX)
  – MIC – DP* vector units are 8 wide! (VEX)

• Unvectorized loops lose 4x performance on Sandy Bridge and 8x performance on MIC!

• Evaluate performance with vectorization compiler options turned on and off (“-no-vec”) to assess overall vectorization.

*DP = double precision (8 bytes, 64 bits)
Working with a Vectorizing Compiler

- Compilers are good at vectorizing inner loops, but they need help
  - Make sure each iteration is independent
  - Align data to match register sizes and cache line boundaries
- Compilers will look for vectorization opportunities starting at -O2
  - To apply the latest relevant vector instructions for the given architecture: 
    \(-x<\text{simd instr set}>\)
  - To examine assembly code, \textit{myprog.s}: -S
  - To confirm with a vector report: -vec-report=<n>, n="verboseness"

% ifort -xHOST -vec-report=4 prog.f90 -c
prog.f90(31): (col. 11) remark:
  loop was not vectorized: existence of vector dependence
Dreams for Future Software Convergence

What would application programmers find most desirable?

- Stay with standard languages, language extensions, and compilers
  - Move away from CUDA and special compilers
- Operate at a high level
  - Avoid “intrinsics” that resemble assembly language
- Express programs in terms of generic parallel tasks
  - De-emphasize APIs based on specific realizations, like threads

Maybe we’re getting close…

- Compilers support vectorization and OpenMP (CL? ACC?)
- There’s plenty of room for improvement in the emerging standards
What Does All This Mean for Me?

• Next-generation algorithms and programs will need to run well on architectures like those just described
  – Power efficiency will inevitably drive hardware designs in this direction
  – Mobile processors are just as power-constrained as HPC behemoths; the design goals align
  – It seems likely that even workstations and laptops will soon come equipped with many-core coprocessors of some type
• Therefore, finding and expressing parallelism in your computational workload will become increasingly important
  – Codes must be flexible enough to deal with heterogeneous resources
  – Asynchronous, adaptable methods may eventually be favored
Reference

- Much of the information in this talk was gathered from presentations at the TACC–Intel Highly Parallel Computing Symposium, Austin, Texas, April 10–11, 2012: http://www.tacc.utexas.edu/ti-hpcs12.