Introduction to CUDA Programming

Philip Nee
Cornell Center for Advanced Computing

June 2013

Based on materials developed by CAC and TACC
<table>
<thead>
<tr>
<th>Overview</th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Heterogeneous Parallel Computing</td>
</tr>
<tr>
<td></td>
<td>• Stampede and NVIDIA K20 GPU</td>
</tr>
<tr>
<td></td>
<td>• Programming Structure</td>
</tr>
<tr>
<td></td>
<td>• Thread Hierarchy</td>
</tr>
<tr>
<td></td>
<td>• Memory Model</td>
</tr>
<tr>
<td></td>
<td>• Performance Topics</td>
</tr>
<tr>
<td>Overview</td>
<td>Terminology</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>• GPU</td>
<td>– Graphics Processing Unit</td>
</tr>
<tr>
<td>• CUDA</td>
<td>– Compute Unified Device Architecture</td>
</tr>
<tr>
<td>• Manycore</td>
<td></td>
</tr>
<tr>
<td>• Multicore</td>
<td></td>
</tr>
<tr>
<td>• SM</td>
<td>– Stream Multiprocessor</td>
</tr>
<tr>
<td>• SIMD</td>
<td>– Single Instruction Multiple Data</td>
</tr>
<tr>
<td>• SIMT</td>
<td>– Single Instruction Multiple Threads</td>
</tr>
</tbody>
</table>
Overview

What is CUDA?

- Compute Unified Device Architecture
 - Manycore and shared-memory programming model
 - An Application Programming Interface (API)
 - General-purpose computing on GPU (GPGPU)

- Multicore vs Manycore
 - Multicore – Small number of sophisticated cores
 - Manycore – Large number of weaker cores
Overview

• Why CUDA?
 – High level
 • C/C++/Fortran language extensions
 – Scalability
 – Thread-level abstraction
 – Runtime library
 – **Thrust** parallel algorithm library

• Limitations
 – Not vendor neutral: NVIDIA CUDA-enabled GPUs only
 • Alternative: **OpenCL**

This course will be in C
Overview

Why are we using GPU?

- Parallel and multithread hardware design
- Floating point computation
 - Graphic rendering
 - General-purpose computing
- Energy Efficiency
 - More FLOPS per Watt than CPU

- MIC vs GPU
 - Comparable performance
 - Different programming models
Different designs for different purposes

- **CPU**: Fast serial processing
 - Large on-chip cache, to minimize read/write latency
 - Sophisticated logic control
- **GPU**: High computational throughputs
 - Large number of cores
 - High memory bandwidth
<table>
<thead>
<tr>
<th>Overview</th>
<th>Heterogeneous Parallel Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sandy Bridge E5 - 2680</td>
</tr>
<tr>
<td>Processing Units</td>
<td>8</td>
</tr>
<tr>
<td>Clock Speed (GHz)</td>
<td>2.7</td>
</tr>
<tr>
<td>Maximum Threads</td>
<td>8 cores, 2 threads each = 16 threads</td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td>51.6 GB/s</td>
</tr>
<tr>
<td>L1 Cache Size</td>
<td>64 KB/core</td>
</tr>
<tr>
<td>L2 Cache Size</td>
<td>256 KB/core</td>
</tr>
<tr>
<td>L3 Cache Size</td>
<td>20MB</td>
</tr>
</tbody>
</table>

SM = Stream Multiprocessor
Overview

SIMD

• SISD: Single Instruction Single Data
• SIMD: Single Instruction Multiple Data
 – A vector instruction that perform the same operation on multiple data simultaneously

• SIMD Instruction Sets:
 – MMX
 • Multimedia eXtension
 – SSE
 • Streaming SIMD Extensions
 – AVX
 • Advanced Vector Extensions
• 6400+ compute nodes, each has:
 – 2 Sandy Bridge processors (E5-2680)
 – 1 Xeon Phi Coprocessor (MIC)

• There are 128 GPU nodes, each is augmented with 1 NVIDIA K20 GPU

• Login nodes do not have GPU cards installed!
Running your GPU application on Stampede:

- Load CUDA software using the `module` utility

- Compile your code using the NVIDIA `nvcc compiler`
 - Acts like a wrapper, hiding the intrinsic compilation details for GPU code

- Submit your job to a `GPU queue`
1. Extract the lab files to the home directory

 $ cd $HOME
 $ tar xvf ~tg459572/LABS/Intro_CUDA.tar

2. Load the CUDA software

 $ module load cuda
3. Go to lab 1 directory, `devicequery`

```bash
$ cd Intro_CUDA/devicequery
```

- There are 2 files:
 - Source code: `devicequery.cu`
 - Batch script: `batch.sh`

4. Use NVIDIA `nvcc` compiler, to compile the source code

```bash
$ nvcc -arch=sm_30 devicequery.cu -o devicequery
```
5. Job submission:
 – Running 1 task on 1 node: `#SBATCH -n 1`
 – GPU development queue: `#SBATCH -p gpudev`

$ sbatch batch.sh
$ more gpu_query.o

<table>
<thead>
<tr>
<th>Queue Name</th>
<th>Time Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpu</td>
<td>24 hrs</td>
<td>GPU queue</td>
</tr>
<tr>
<td>gpudev</td>
<td>4 hrs</td>
<td>GPU development node</td>
</tr>
<tr>
<td>vis</td>
<td>8 hrs</td>
<td>GPU nodes + VNC service</td>
</tr>
</tbody>
</table>
CUDA Device Query...
There are 1 CUDA devices.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA Device #0</td>
<td></td>
</tr>
<tr>
<td>Major revision number</td>
<td>3</td>
</tr>
<tr>
<td>Minor revision number</td>
<td>5</td>
</tr>
<tr>
<td>Name</td>
<td>Tesla K20m</td>
</tr>
<tr>
<td>Total global memory</td>
<td>5032706048</td>
</tr>
<tr>
<td>Total shared memory per block</td>
<td>49152</td>
</tr>
<tr>
<td>Total registers per block</td>
<td>65536</td>
</tr>
<tr>
<td>Warp size</td>
<td>32</td>
</tr>
<tr>
<td>Maximum memory pitch</td>
<td>2147483647</td>
</tr>
<tr>
<td>Maximum threads per block</td>
<td>1024</td>
</tr>
<tr>
<td>Maximum dimension 0 of block</td>
<td>1024</td>
</tr>
<tr>
<td>Maximum dimension 1 of block</td>
<td>1024</td>
</tr>
<tr>
<td>Maximum dimension 2 of block</td>
<td>64</td>
</tr>
<tr>
<td>Maximum dimension 0 of grid</td>
<td>2147483647</td>
</tr>
<tr>
<td>Maximum dimension 1 of grid</td>
<td>65535</td>
</tr>
<tr>
<td>Maximum dimension 2 of grid</td>
<td>65535</td>
</tr>
<tr>
<td>Clock rate</td>
<td>705500</td>
</tr>
<tr>
<td>Total constant memory</td>
<td>65536</td>
</tr>
<tr>
<td>Texture alignment</td>
<td>512</td>
</tr>
<tr>
<td>Concurrent copy and execution</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of multiprocessors</td>
<td>13</td>
</tr>
<tr>
<td>Kernel execution timeout</td>
<td>No</td>
</tr>
</tbody>
</table>
• Host Code
 – Your CPU codes
 – Takes care of:
 • Device memory
 • Kernel invocation

• Kernel Code
 – Your GPU code
 – Executed on the device
 – __global__ qualifier
 • Must have return type void
• Function Type Qualifiers in CUDA
 __global__
 • Callable from the host only
 • Executed on the device
 • void return type
 __device__
 • Executed on the device only
 • Callable from the device only
 __host__
 • Executed on the host only
 • Callable from the host only
 • Equivalent to declare a function without any qualifier

• There are **variable type qualifiers** available
• Visit the [NVIDIA documentation](https://developer.nvidia.com/) for detail information
• Kernel is invoked from the host

```c
int main() {
    ...
    //Kernel Invocation
gpufunc<<<gridConfig,
blkConfig>>>(arguments…)
    ...
```

• Calling a kernel uses familiar syntax (function/subroutine call) augmented by Chevron syntax

• The Chevron syntax (<<<…>>>) configures the kernel
 – First argument: How many blocks in a grid
 – Second argument: How many threads in a block
Thread Hierarchies

- **Thread**
- **Block**
 - Assigned to a SM
 - Independent
 - Threads within a block can:
 - Synchronize
 - Share data
 - Communicate
 - On K20: 1024 threads per block (max)
- **Grid**
 - Invoked kernel
<table>
<thead>
<tr>
<th>Thread</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads and blocks have its unique ID</td>
<td></td>
</tr>
<tr>
<td>- Thread: <code>threadIdx</code></td>
<td></td>
</tr>
<tr>
<td>- Block: <code>blockIdx</code></td>
<td></td>
</tr>
<tr>
<td><code>threadIdx</code> can have maximum 3 dimensions</td>
<td></td>
</tr>
<tr>
<td>- <code>threadIdx.x</code>, <code>threadIdx.y</code>, and <code>threadIdx.z</code></td>
<td></td>
</tr>
<tr>
<td><code>blockIdx</code> can have maximum 2 dimensions</td>
<td></td>
</tr>
<tr>
<td>- <code>blockIdx.x</code> and <code>blockIdx.y</code></td>
<td></td>
</tr>
<tr>
<td>Why multiple dimensions?</td>
<td></td>
</tr>
<tr>
<td>- Programmer’s convenience</td>
<td></td>
</tr>
<tr>
<td>- Think about working with a 2D array</td>
<td></td>
</tr>
</tbody>
</table>
Thread Parallelism

Types of parallelism:

- **Thread-level Task Parallelism**
 - Every thread or group of threads, executes a different instruction
 - Not ideal because of thread divergence

- **Task Parallelism**
 - Different blocks perform different tasks
 - Invoke multiple kernels to perform different tasks

- **Data Parallelism**
 - Shared memory across threads and blocks
Threads in a block are bundled into small groups of *warps*

- 1 warp = 32 Threads with consecutive *threadIdx* values
 - Example: [0..31] from the first warp, [32…63] from the second warp

- A full warp is mapped to the SIMD unit (Single Instruction Multiple Threads, *SIMT*)

- Threads in a warp cannot diverge
 - Divergence serializes the execution

- Example: In an *if-then-else* construct:
 1. All threads will execute *then*
 2. then execute *else*.
Memory Model

- **Kernel**
 - per-device Global Memory
- **Block**
 - per-block shared memory
- **Thread**
 - per-thread register
- **CPU and GPU do not share memory**

Two-way arrows indicate read/write capability
Memory Model

- **per-thread register**
 - Private, storage for local variables
 - Fastest
 - Life time: thread

- **per-block shared memory**
 - Shared within a block
 - 48k, fast
 - Life time: Kernel
 - `__shared__` qualifier

- **per-device global memory**
 - Shared
 - 5G, Slowest
 - Life time: Application
Memory Transfer

- Allocate device memory
 - `cudaMalloc()`

- Memory transfer between host and device
 - `cudaMemcpy()`

- Deallocate memory
 - `cudaFree()`
int main()
{
 //Host memory allocation
 h_A=(float *)malloc(size);
 h_B=(float *)malloc(size);
 h_C=(float *)malloc(size);

 //Device memory allocation
 cudaMalloc((void **)&d_A, size);
 cudaMalloc((void **)&d_B, size);
 cudaMalloc((void **)&d_C, size);

 //Memory transfer, kernel invocation
 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_C, h_C, size, cudaMemcpyHostToDevice);

 vec_add<<<<<N/512, 512>>>(d_A, d_B, d_C);
 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

 cudaFree(d_A);
 cudaFree(d_B);
 cudaFree(d_C);
 free(h_A);
 free(h_B);
 free(h_C);
}

Allocate host memory

Allocate device memory

Transfer memory from host to device

Invoke the kernel

Transfer memory from device to host

Deallocate the memory

h_varname : host memory
d_varname : device memory
Memory

Lab 2: Vector Add

//Vector Size
#define N 5120000

//Kernel function
__global__
void vec_add(float *d_A, float *d_B, float *d_C)
{
 //Define Index
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 //Vector Add
 d_C[i] = d_A[i] + d_B[i];
}

int main()
{
 ...
 vec_add<<<N/512, 512>>>(d_A, d_B, d_C);
 ...
}
$ cd $HOME/Intro_CUDA/vectoradd
$ nvcc -arch=sm_30 vectoradd.cu -o vectoradd
$ sbatch batch.sh

• Things to try on your own (After the talk):
 – Time the performance using different vector length
 – Time the performance using different block size

• Timing tool:
 – /usr/bin/time –p <executable>
 – CUDA also provides a better timing tool, see NVIDIA Documentation
Advanced Performance Topics

• Minimize execution divergence
 – Thread divergence serializes the execution

• Maximize on-chip memory (per-block shared, and per-thread)
 – Global memory is slow (~200GB/s)

• Optimize memory access
 – Coalesced memory access
Advanced Performance Topics

• **What is coalesced memory access?**
 – Combine all memory transactions into a single warp access
 – K20: 32 threads * 4-byte word = 128 bytes

• **What are the requirements?**
 – Memory alignment
 – Sequential memory access
 – Dense memory access
1 Transaction
Sequential and aligned (Stride 1)

1 Transaction
Non-sequential and Aligned (Stride 1)

2 Transactions
Sequential and Misaligned (Stride 2)
Consider the following code:

- Is memory access aligned?
- Is memory access sequential?

//The variable, offset, is a constant
int i=blockDim.x * blockIdx.x + threadIdx.x;
int j=blockDim.x * blockIdx.x + threadIdx.x + offset;
d_B2[i]=d_A2[j];
Summary

• GPU is very good at massive parallel jobs, and CPU is very good at serial processing

• Avoid thread divergence

• Use on-chip memory

• Always try to perform coalesced memory access
$ cd $HOME/Intro_CUDA/matrix_mul
$ nvcc -arch=sm_30 matrix_mul.cu -o matmul
$ sbatch batch.sh

- Things to try on your own (After the talk):
 - Compare the performance to the CUDA BLAS matrix multiplication routine
 - Can you improve the performance of it?
 - Hints:
 - Use on-chip memory
 - Use page-locked memory (see cudaMallocHost())
Recommended Reading:

- CUDA Documentation