
Vectorization Lab

Parallel Computing at TACC:

Ranger to Stampede Transition

Aaron Birkland
Consultant

Cornell Center for Advanced Computing

June 18, 2013

Simple Vectorization

This lab serves as an introduction to using a vectorizing compiler. We will work with code
containing a tight loop that should be easily vectorizable by the compiler. Our goal is to
try out various compiler options and compare vectorized with non-vectorized code.

1. Unpack the lab materials into your home directory, and change into the vector direc-
tory.

$ cd
$ tar xvf ~tg459572/LABS/vector.tar
$ cd vector

2. We noted that the Intel compiler starts applying vectorization with -O3. Let’s see if
we can view a vectorization report to see what it did.

$ icc simple.c -vec-report=2 -O3 -o simple
simple.c(19): (col. 2) remark: LOOP WAS VECTORIZED.
simple.c(26): (col. 3) remark: LOOP WAS VECTORIZED.
simple.c(25): (col. 5) remark: loop was not vectorized: not inner loop.

This shows that two loops were vectorized: The initial value loading loop, and our
computation loop. However, the line numbers and comments look strange. Why does
it say the inner part of our loop (line 26) was not vectorized because of “not inner
loop”, while our outer loop (line 25) was vectorized? Compilers are free to reverse the
order of loops for the sake of efficiency if it is safe to do so. Do you think this was the
case here?

1



3. Now that the compiler has told us that it vectorized our loops, let’s verify this by
compiling with vectorization disabled.

$ icc simple.c -no-vec -vec-report=2 -O3 -o simple_no_vec

Notice that all the vectorization reports disappeared, even though we specified report-
ing as a compile option. When vectorization is disabled, the reports disappear.

4. As mentioned in the talk, the Intel compiler will use SSE (128-bit) instructions by
default. Compile the code with vectorization enabled, but add the argument -xAVX
to the compilation flags to use 256-bit AVX. Name your executable simple avx.

5. Now compile vectorized and non-vectorized variants of the code to run natively on the
MIC coprocessor. Use the compile flag -mmic to compile for the MIC architecture.

$ icc simple.c -mmic -O3 -o simple.mic
$ icc simple.c -no-vec -mmic -O3 -o simple_no_vec.mic

6. The simple.sh batch file will record the execution time each of our vectorized and
non-vectorized applications. Take a look at the batch script, then run it and examine
the output.

$ sbatch simple.sh
$ cat slurm-951653.out

simple_no_vec: 0.67
simple 0.37
simple_avx 0.25
simple_no_vec.mic 13.22
simple.mic 2.78

As we have seen, vectorization on the Intel compiler can be simple and straightforward.
Correlating vectorization reports with the source code can be a little bit tricky, especially
if the compiler implements optimizations such as loop reordering. However, as long as we
have some sense of what the compiler ought to be doing, this can usually be figured out
with a little effort.

Cornell Center for Advanced Computing 2


