59 Cornell University

Center for Advanced Computing

Profiling and Debugging

Aaron Birkland
Consultant
Cornell CAC

With contributions from TACC training materials

Parallel Computing on Stampede
October 30, 2013

58y Cornell University

ad/§/ Center for Advanced Computing

Introduction

Debugging
» Find defects, analyze failures, verify
expected program flow.

« Debugger tools: Inspect or modify
state of running program, port-
mortem analysis of memory dumps.

« Harder in parallel!

10/30/2013

Profiling

Measure performance
characteristics, Identify areas for
Improvement.

Profiler tools: collect performance
measurements of a running
program, analyze afterward.

Harder in parallel!

59 Cornell University

Center for Advanced Computing

Background: Compiling/Linking

Resolve symbols
from external libs.

-

Create machine instructions, static data,

symbols (function/variable names) -

10/30/2013

static dynamic

\ Cornell University

Center for Advanced Computing

Background: Executable Files

Machine instructions, memory addresses

Global and static variable data

Symbol table, linked library filenames,
compiler version, other metadata.

10/30/2013

59 Cornell University

Center for Advanced Computing

Background: Execution & Memory

Memory

—>linstructions | [data | Loaded once at startup
‘ Grows/shrinks as program
heap |- 7

instructions | idata_ Loaded from dynamic
libraries at start or
instructions | idata | runtime

Executable file

.%

10/30/2013

58y Cornell University
),

Center for Advanced Computing

Background: OS and Hardware

« OS can provide API for inspecting and controlling process execution
 Wrap a program at startup or attach to running process
« Example: Linux ptrace ()
— Pause execution
— Modify in-memory instructions
— Inspect or modify data memory or registers
— Catch signals and traps
« CPU can provide hardware counters
— Cache hits/misses, TLB hits/misses, FLOPs, etc

10/30/2013

59 Cornell University

Center for Advanced Computing

Background: Profilers and Debuggers in control

Memory

Read or write data, instructions

Load alternate
libraries

Executable file

F

Read symbols, metadata

10/30/2013

Cornell University

Center for Advanced Computing

Debugging

* Inspect program state, compare to one’s own assumptions and expectations

— Step through code line by line
— Inspect variables/memory at specific points
— Inspect memory and call stack after a crash
« For MPI, OpenMP ‘state’ gets more complex
— Many remote processes with own memory

— Message status and timing
— Step through individual processes or thread independent of rest (while others may

still be running?!)

10/30/2013

Cornell Umversltv

Center for Advanced Computing

T H-'I'

Debugging: printf and logging

int main (int argc, char™ argv) {
printf(“Starting main...”);
int iterations = 5;
int val = 0, val2=0;
printf(“Initialized val to %d and val2 to %d", val, val2);
while (iterations --) {
val = sometime();
print(*Sometime() returned %d\n”, val),
val2 = moretime();
printf(*moretime() returned %d\n”, val);

}

printf(“Exiting main, iterations ==%s\d", iterations);

10/30/2013

Cornell University

Center for Advanced Computing

Debugging: printf and logging

« Easy and intuitive
— Target specific sections of code, under specific conditions
— Simply analyze log(s) after execution, even for parallel or multithreaded jobs
— Great for rare/transient or timing related bugs
* |nvasive and messy
— Need to re-compile when logging statement added/removed
— Can slow down execution
— Easy to forget statements are there
— Can be hard to correlate output with statements.
— Jumbled output with threads printing simultaneously

10/30/2013

Cornell University

Center for Advanced Computing

Debugging: printf and logging

« Logging frameworks an improvement over printf (e.g. Log4c)
— Filter by log levels (WARN, INFO, DEBUG)
— Timestamps, formatting, runtime configuration changes

— Control over where/how log is written (console, large file, rolling file, remote
server, database, etc)

10/30/2013

Cornell University

Center for Advanced Computing

Debugging: printf and logging

int main (int argc, char*™ argv) {

log4c_init();

mycat = log4c_category_get(“sillyapp.main”);

int iterations = 5;

logd4c_category_log(mycat, LOG4C_PRIORITY_DEBUG,"Debugging app 1
- loop %d", iterations);

int val = 0, val2=0;

log4c_category_log(mycat, LOG4C_PRIORITY_ERROR, “Some error”

printf(“Initialized val to %d and val2 to %d”, val, val2);

[Header]

2009-05-13 15:21:14,315[11] WARN Logger.Program Pretty sure I'm getting ready to die!
2009-05-13 15:21:14,331[11] ERROR Logger.Program uh-oh, no | wasn't!

2009-05-13 15:21:14,331 [11] FATAL Logger.Program blech. Out

[Footer]

10/30/2013

59 Cornell University

Center for Advanced Computing

Debugging: symbolic debugging

* Inspect process memory, correlate instructions & memory addresses with
symbols from source code.

« Compiler option (-g for gcc, intel) tells compiler to store debugging symbols
In the executable file

Human-readable symbols and correlation data stored in
one of the “other” segments in an executable file.
Not loaded into memory (no runtime overhead)
Some compilers MAY disable some optimizations
Available for inspection by debugging tool
Provides a very useful “map” for inspecting core dumps

10/30/2013

Cornell Umversltv

Center for Advanced Computing

Debugging: symbolic debugging: serial, threaded

Memory Determine location, step through
lines of code by manipulating
instructions

Read function call sequence and
local variables from stack

Executable file Read program data from heap

'3 BN 2R

Cost [C/C++ Application]

bost.c:8 Ox4 2f049

D) (T

D@ Bl
der (@ test_timing_boost.c ﬁﬁ __libc_start_main() (@ test_timing.c % =8

I}

eriodic and within tolerance */ {

Read symbols, metadata

DESIRED_INVOCATION_ COUNT =55
DESIRED_INTERVAL =

>sta t(u DESIRED_INTERVAL, _track_timer.
*) &

a1 J#nothing*/
42} while (ts.invocation_count < DESIRED_INVOCATION_COUNT);
42

10/30/2013 ’

Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: serial, threaded
 GDB (Gnu, almost ubiquitous), IDB (Intel)
— Launch a program, analyze a dump, or attach to running process

— Set conditional breakpoints, start/stop execution at will
— Inspect and modify variables

Launch a process: gdb <executable>

Attach to process: gdb <executable> 1234

Analyze a dump: gdb <executable> core.1234
(check ulimit setting for max core file size!)

10/30/2013

Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: GDB

* run — execute the program from beginning.
« Dbacktrace — produce the backtrace from the last fault

* break <line number> or break <function-name> - break at the line number or
at the use of the function

« step — step to next line of code (step into function if possible)
* next — step to next line of code (do not step into function)

« print <variable name> - print the value stored by the variable
« continue — run until next break point

10/30/2013

Cornell Umversltv

Center for Advanced Computing

Debugging: symbolic debugging

%5 Debug & = B || variables X ™ % Breakpomts} it Reglsters} =) ModuLes} =8
Ok IS S S i = 5 [E il o
< [l test_timing_boost [C/C++ Application] Name -
~ i /home/apb18/projects/ CAC/dif42_0001/sim_build/test/execution/test_tir| ~ % timer
< o Thread [1] 3572 [core: 0] (Suspended : Step) ~ = deadline_timer
= test_period() at test_timing.c:37 0x44 2087 v @ boost::asio: basic_io_object<boost::asio:; deadline_timer_service<boo:
= run() at test_timing.c:25 0x44 2056 P = service
= main() at test_timing_boost.c:8 0x42f049 P (2 implementation \/ 1 bl
L - ariables
b » mutex

Stack view > o thess g
(<] I [[>]
Name : deadline_timer -

Detalls:0x305f0ec9e0

fault: f 1
Defaul t:Oxa0sToececo Evaluation,

Hex: Ox305fDec9ecO

géEz{yoéé;}-ggggéii;ééloooﬁll 1101100100111000000 exp reSS i O n S

<

y »)| |)
[H smplserial.h (@ smplserial.cpp (@ timed_latency_sender [test_timing_boost.c (__libe_start_main(} (B test_timing.c & P =0

24void run(void) {

25 test_period();

26 test_absolute_tlme 0;
27}

28 —
20 /4 Verify that the timer peried is in fact periedic and within telerance */
Z0static void test_period(void)

31 volatile Timer_state ts; L
3z Timer *timer;

33 const Uin‘tlﬁ_‘t DESIRED _INVOCATION COUNT = 5;
34 const ulntlé_t DESIRED INTERVAL = 5;

35 ts.lnvecation_count = 0;

Source code
and execution

37 timer = timing_impl-=start(@, DESIRED_INTERVAL, _track_timer,
38 (Timer_state *) &ts);

40 do {)
41 /*nathing*/ _
42 } while (ts.invocation_count < DESIRED INVOCATION_COUNT);

I
w
(]

10/30/2013

Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: Optimized code

« Aggressive optimizations (e.g. —03) cause machine instructions to diverge
from machine code!

— Loop unrolling, function inlining, instruction re-ordering, optimizing out variables,
etc

« Effects: debugger much less predictable
— Setting some breakpoints are impossible (instructions optimized out or moved)
— Variables are optimized out, or appear to change unexpectedly
— Stepping through code follows arbitrary execution order

« Easiest to debug with NO optimizations (-00)

10/30/2013

59 Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: Distributed
Memory

Read or write data, instructions

Load alternate
libraries

Executable file

F

Read symbols, metadata

10/30/2013

Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: Distributed

B
-

/

10/30/2013

58y Cornell University
(&)

Center for Advanced Computing

Debugging: symbolic debugging: distributed: DDT

« DDT (Allinea Distributed Debugger Tool)
* Proprietary, GUI-oriented
« Large-scale OpenMP, MPI debugging

— MPI message tracking

— View queues and communication patterns for running procs
— Supports all MPI distributions on Ranger

« Jobs submitted through DDT
— Remember, it needs to “wrap” and control each task

« Usage: Compile with —g, then module load ddt, then ddt
<executable> and go from there.

* Need local X server (ssh —X), or use vnc on

10/30/2013

Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: distributed: DDT

Allinea Distributed Debugging Tool v2.3.1

Session Confrol Search View Help

Ak R ¥A J 1117
Current Group;
Project MNavigator

Focus on current: @ Group O Process O Thread Step Threads Together

Project Files

Project Files
+ & Source Tree

Add any arguments F
+ S Header Files

+8 Source Files
2

Local Variables

Locals | Current Line(s)

Yariable Mame ‘Value |

Stack

DDT - Run (queue submission mode)
\§ Application: /sharefhome/00940/4gB0187 1/ddt/ddt_app

Arguments:

Run MWithout MPI Suppart

Stampede default - osons mepon ey use e cnonge. |

T

MWumber of proce 3z é} MNumber of threads [(OpentdP only): |1 §]
dranced >>

Glueue Submission Parameters: Gueue=development, YWall Clock Limit=0:30:00, Project={undefined) = Change...

Submit Cance|

Sets number
of nodes

s
S
=3

5
=1

Process

Click when ready
to submit job

DoT

10/30/2013

e

Allinea Distributed Debugging Tool v;

ession Control Search Yiew Help
el B & 5 R EBIET EJBR

~ Focus on current: ® Group ' Process (. Thread Step Threads Together

[HEE 5|5|7|E|9|m|m|1z|13'14'15'15|17|1s|19'20'21|zz|za|z4|zs|ze|z7|za|29|an|aw_‘

Processes and -
groups

Curfent Group: Root

I N e e

debug_codef x

Project Files | Fartran hodules B . [«]| Locals | CurrentLine(s) | Stack
3 integer mpierr . X
@ Project Files 7 integer mpistat(mpi_status_size
EwSJ T 8 integer 1,tmppe,mype,n.npes Vartable Name |Va|ue ‘
OUrCe Tree 9 integer nmax i]
+-E Header Files 0 paraneter (NMAX=1048577)
1

1
+8 Source Files [
1

Source code
2
3 ¢ Imitialize MPI
14

call wpi_initimpierr)
15 call mpi_comn_rankimpi _comm_war]d, mype, mpierr)

.
16 call mpi_comr_size(mpi _comm_morld, npes, mpierrd and eXeCutIOn
17

18 ¢ Imt\ahza data

T Variables

MAX — 1 — mype

el if(mype .eq. U) thes
32 write(g,* 'anS ‘.npes,' mype:'.mype

else
34 write(s,*) * ' mype:’,mype
endif
TS
|7 I O] <]] ||Type: none selected

=] stdout | Stderr | Stdin ("Root” group) | Breakpoints | Watches | Stacks

E Expression | Value |

Currently Displaying: Al -

Evaluation,
expressions

Stack view and
stdout

DDT

10/30/2013

Cornell University

Center for Advanced Computing

Debugging: symbolic debugging: distributed: DDT

aan % DDT - Message Queuss

Salect quewse 10 show

[+ |Send

[+ Recaive

—

BN

a Select communicator
- MPI_COMM_®ORLD

PP S0t _ W ORLD_coll

e £ | - e MPI_COsib_SELF

e ELTS MPL_CO8M_SELF _Collec
=-unn Amed--
'ﬂ 4] | el
: FReanks

_J Enow Iocal ranks
& Show glokal ranks

Updats |

| Show queisss In Balbla

10/30/2013

Cornell University

Center for Advanced Computing

Profiling

« Measure performance characteristics, identify compute-intensive areas (e.g.
“hot spots”) that may be worth improving

« Can suffer from “observer effect” — collecting performance data significantly
degrades performance
« Two main approaches: instrumentation and statistical sampling

— Instrumentation: add instructions to collect information (function call duration,
number of invocations, etc)

— Sampling: Query state of unmodified executable at regular intervals

10/30/2013

59 Cornell University

Center for Advanced Computing

Profiling: Instrumentation

-

10/30/2013

Cornell University

Center for Advanced Computing

Profiling: Instrumentation: printf and timers

Check system time and printf at appropriate points
— SYSTEM_CLOCK or clock() for fortran, C
Very simple, great for targeting a specific area.
Problem: printf statements are expensive, especially if there are many

Problem: Timer precision and accuracy Is system/implementation
dependent.

10/30/2013

58y Cornell University
(&)

Center for Advanced Computing

Profiling: Instrumentation: GPROF

« GPROF (GNU profiler)
« Compile option —-pg adds debugging symbols and additional data collection
symbols
— Slows program down, sometimes significantly
« Each time program is run, output file gmon . out Is created containing profiling
data

— This data is then analyzed by gprof in a separate step, e.g. gprof <executable>
gmon.out > profile.txt

10/30/2013

Cornell University

Center for Advanced Computing

Profiling: Instrumentation: GPROF

« Flat profile
— Lists each function with associated statistics
— CPU time spend, number of times called, etc
— Useful to identify expensive routines
« Call Graph
— Number of times function was called by another, called others
— Gives a sense of relationship between functions
« Annotated Source
— Number of times a line was executed

10/30/2013

58y Cornell University
(&)

Center for Advanced Computing

Profiling: Instrumentation: TAU

« Specialized in multithreaded and/or MPI applications

« Compile with special wrappers
— tau cc.sh, tau f90.sh

« Set environment variables to gather certain statistics
— export COUNTER1=GET TIME OF DAY
— export COUNTER2=PAPI FP OPS

e TextUl pprof

« GUlviaparaprof

* Integrates with (i.e. can access data from) sampling libraries such as PAPI
« Can also perform statistical sampling via tau exec

10/30/2013

Cornell University

Center for Advanced Computing

Profiling: sampling
Memory

Read execution state from memory

Executable file

CC ccccam
ecccccum
| ccccccm

A LTy

Read hardware counters

Read symbols, metadata

10/30/2013

58y Cornell University
(&)

Center for Advanced Computing

Profiling: sampling: HPCToolkit, PAPI

 PAPI: Provides access to hardware counters

— API hides gory details of hardware/OS platform

— Cache accesses, hits, misses

— FLOPS

— The kinds of data available depend very much on hardware
« HPCToolkit

— Asynchronous sampling of running processes

— Supports OpenMP, MPI, and hybrid

— Supports running against optimized code

10/30/2013

http://hpctoolkit.org/

58y Cornell University

ad/§/ Center for Advanced Computing

Profiling: sampling: PerfExpert

« Developed at TACC

« Easy to use interface over data collected via HPCToolkit and PAPI
« Provides suggestions and “what to fix”

« Runs against fully optimized code with debugging symbols

« Profile with perfexpert run exp, creates results file experiment.xml
* View results with perfexpert <threshold> experiment.xml

« Get recommendations with
perfexpert -r <threshold> experiment.xml

10/30/2013

http://www.tacc.utexas.edu/perfexpert
http://www.tacc.utexas.edu/perfexpert

g9 Cornell University
),

Center for Advanced Computing

Profiling: sampling: PerfExpert

Loop in function main() at Integrator.c:81 (98.9% of the total runtime)

ratio to total instrns
- fleoating point
- data accesses

* GFLOPS (% max)

kkdkkkhkkhkdkhkhkhdk
kb hkdkkhrdkhddhkrthddthbhdhbdthhbdhhddd

performance assessment
* pverall
upper bound estimates
* data accesses
- Lld hits
- L2d hits
- L2d misses
* instruction accesses
- Lli hits
- L2i hits
- L2i misses
* data TLB
instruction TLBE
* branch instructions

*

- correctly predicted:

- mispredicted

* floating-point instr
- fast FP instr
- slow FP instr

10/30/2013

1]

oOHHOODOCDODOODOCDOoOOLDMNMBNbDW

o HFOKFKFOOOODBBKFK OMBMNKH

e P e i i

i B N B B N S Y o
i S N S

e e B S B i
b T e 2 e 2 e

DIDODDIDIDDDIDIDIDIIDIDIDD
DIDODDIDIDDDIDIDDIDDIIDD
>

Cornell University

Center for Advanced Computing

Profiling: sampling: PerfExpert

Code Section: Loop in function main() at Integrator.c:81 (98.9% of the total runtime)

change the order of loops
loop i { loop 73 {...} } = loop 7 { loop i {...} 1}
employ loop blocking
loop i {loop k {loop j {c[i][]J] = c[1][]J] + a[i][k] * b[k][3]:}}} —
loop k step 5 {loop j step s {loop i {
for (kk = k; kk < k + 5; kk++) {
for (33 = 37 33 < 3 + s; Jj++) |
c[1][33] = <[i]1[33] + a[i][kk] * b[kk][jJ1:;}}}}}
apply loop fission so every loop accesses just a couple of different arrays
loop i {a[i] = a[i] * b[i] - c[i]:;} =
loop i {a[i] = a[i] * b[i];} loop i {a[i] = a[i] - c[i];}

10/30/2013

