
Vetorization Lab

Parallel Computing on Stampede

Aaron Birkland

Cornell Center for Advaned Computing

Ot 30, 2013

This lab serves as an introdution to using a vetorizing ompiler. We will work with

ode ontaining a tight loop that should be easily vetorizable by the ompiler. Our goal is

to try out various ompiler options and ompare vetorized with non-vetorized ode.

1. Unpak the lab materials into your home diretory, and hange into the vetor dire-

tory.

$ d

$ tar xvf ~tg459572/LABS/vetor.tar

$ d vetor

2. We noted that the Intel ompiler starts applying vetorization with -O3. Let's see if

we an view a vetorization report to see what it did.

$ i simple. -ve-report=2 -O3 -o simple

simple.(19): (ol. 2) remark: LOOP WAS VECTORIZED.

simple.(26): (ol. 3) remark: LOOP WAS VECTORIZED.

simple.(25): (ol. 5) remark: loop was not vetorized: not inner loop.

This shows that two loops were vetorized: The initial value loading loop, and our

omputation loop.

3. Now that the ompiler has told us that it vetorized our loops, let's verify this by

ompiling with vetorization disabled.

$ i simple. -no-ve -ve-report=2 -O3 -o simple_no_ve

Notie that all the vetorization reports disappeared, even though we spei�ed report-

ing as a ompile option. When vetorization is disabled, the reports disappear.

Cornell Center for Advaned Computing 1



4. As mentioned in the talk, the Intel ompiler will use SSE (128-bit) instrutions by

default. Compile the ode with vetorization enabled, but add the argument -xAVX

to the ompilation ags to use 256-bit AVX. Name your exeutable simple avx.

5. Now ompile vetorized and non-vetorized variants of the ode to run natively on the

MIC oproessor. Use the ompile ag -mmi to ompile for the MIC arhiteture.

$ i simple. -mmi -O3 -o simple.mi

$ i simple. -no-ve -mmi -O3 -o simple_no_ve.mi

6. The simple.sh bath �le will reord the exeution time eah of our vetorized and

non-vetorized appliations. Take a look at the bath sript, then run it and examine

the output.

$ sbath simple.sh

$ at slurm-951653.out

simple_no_ve: 0.67

simple 0.37

simple_avx 0.25

simple_no_ve.mi 13.22

simple.mi 2.78

7. Lastly, the intel ompiler ag -xhost an be used to automatially detet all the

advaned features of the hardware (like AVX). The downside is that the resulting

binaries may only be run on mahines with an arhiteture similar to Stampede (e.g.

the binaries would not be able to be run on Lonestar or Longhorn). Try ompiling

with -xhost and see if the runtime is similar to the -axAVX example from before.

As we have seen, vetorization on the Intel ompiler an be simple and straightforward.

Correlating vetorization reports with the soure ode an be a little bit triky, espeially

if the ompiler implements optimizations suh as loop reordering. However, as long as we

have some sense of what the ompiler ought to be doing, this an usually be �gured out

with a little e�ort.

Cornell Center for Advaned Computing 2


