Vectorization

Aaron Birkland
Consultant
Cornell CAC

With contributions from TACC training materials.

Parallel Computing on Stampede
October 30, 2013.
What is Vectorization?

- **Hardware Perspective:** Specialized instructions, registers, or functional units to allow in-core parallelism for operations on arrays (vectors) of data.

- **Compiler Perspective:** Determine how and when it is possible to express computations in terms of vector instructions.

- **User Perspective:** Determine how to write code in a manner that allows the compiler to deduce that vectorization is possible.
Vectorization: Hardware

- Goal: parallelize computations over vector arrays
- SIMD: Single Instruction Multiple Data
- Many instances of a single operation executing simultaneously
 - Late ‘90s – present, commodity CPUs (x86, x64, PowerPC, etc)
 - Small vectors, few cycles per instruction
 - Newer CPUs (Sandy Bridge) can pipeline some SIMD instructions as well – best of both worlds.
Vectorization via SIMD: Motivation

• CPU speeds reach a plateau
 – Power limitations!
 – Many “slow” transistors more efficient than fewer “fast” transistors
• Process improvements make physical space cheap
 • Moore’s law, 2x every 18-24 months
 • Easy to add more “stuff”
• One solution: More cores
 – First dual core Intel CPUs appear in 2005
 – Increasing in number rapidly (e.g. 8 in Stampede, 60+ on MIC)
• Another Solution: More FPU units per core – vector operations
 – First appeared on a Pentium with MMX in 1996
 – Increasing in vector width rapidly (e.g. 512-bit [8 doubles]) on MIC
Vectorization via SIMD: History

<table>
<thead>
<tr>
<th>Year</th>
<th>Registers</th>
<th>Instruction Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>~1997</td>
<td>80-bit</td>
<td>MMX Integer SIMD (in x87 registers)</td>
</tr>
<tr>
<td>~1999</td>
<td>128-bit</td>
<td>SSE1 SP FP SIMD (xMM0-8)</td>
</tr>
<tr>
<td>~2001</td>
<td>128-bit</td>
<td>SSE2 DP FP SIMD (xMM0-8)</td>
</tr>
<tr>
<td>---</td>
<td>128-bit</td>
<td>SSEx</td>
</tr>
<tr>
<td>~2010</td>
<td>256-bit</td>
<td>AVX DP FP SIMD (yMM0-16)</td>
</tr>
<tr>
<td>~2012</td>
<td>512-bit</td>
<td>IMCI (MIC)</td>
</tr>
<tr>
<td>~2014</td>
<td>512-bit</td>
<td>AVX-512 (Xeon)</td>
</tr>
</tbody>
</table>
Vector Registers

Floating Point (FP)
- 64-bit
- 32-bit

SSE/AVX 128
- 2/4

AVX-256
- 4/8

MIC-512
- 8/16

xmm
ymm
zmm
Speed

- True SIMD parallelism – typically 1 cycle per floating point computation
 - Exception: Slow operations like division, square roots
- Speedup (compared to no vector) proportional to vector width
 - 128-bit SSE – 2x double, 4x single
 - 256-bit AVX – 4x double, 8x single
 - 512-bit MIC – 8x double, 16x single
- Hypothetical AVX example: 8 cores/CPU * 4 doubles/vector * 2.0 GHz = 64 Gflops/CPU DP
Speed

- Clearly memory bandwidth is potential issue, we’ll explore this later
 - Poor cache utilization, alignment, memory latency all detract from ideal
- SIMD is parallel, so Amdahl’s law is in effect!
 - Serial/scalar portions of code or CPU are limiting factors
 - Theoretical speedup is only a ceiling
User Perspective

Let’s take a step back – how can we leverage this power

• Program in assembly
 – Ultimate performance potential, but only for the brave
• Program in intrinsics
 – Step up from assembly, useful but risky
• Let the compiler figure it out
 – Relatively “easy” for user, “challenging” for compiler
 – Less expressive languages like C make compiler’s job more difficult
 – Compiler may need some hand holding.
• Link to an optimized library that does the actual work
 – e.g. Intel MKL, written by people who know all the tricks.
 – Get benefits “for free” when running on supported platform
Vector-aware coding

- Know what makes vectorizable at all
 - “for” loops (in C) or “do” loops (in fortran) that meet certain constraints
- Know where vectorization will help
- Evaluate compiler output
 - Is it really vectorizing where you think it should?
- Evaluate execution performance
 - Compare to theoretical speedup
- Know data access patterns to maximize efficiency
- Implement fixes: directives, compilation flags, and code changes
 - Remove constructs that make vectorization impossible/impractical
 - Encourage/force vectorization when compiler doesn’t, but should
 - Better memory access patterns
Writing Vector Loops

- Basic requirements of vectorizable loops:
 - Countable at runtime
 - Number of loop iterations is known before loop executes
 - No conditional termination (break statements)
 - Have single control flow
 - No Switch statements
 - ‘if’ statements are allowable when they can be implemented as masked assignments
 - Must be the innermost loop if nested
 - Compiler may reverse loop order as an optimization!
 - No function calls
 - Basic math is allowed: pow(), sqrt(), sin(), etc
 - Some Inline functions allowed
Conceptualizing Compiler Vectorization

- Think of vectorization in terms of loop unrolling
 - Unroll N interactions of loop, where N elements of data array fit into vector register

```c
for (i=0; i<N; i++) {
    a[i] = b[i] + c[i];
}
```

```c
for (i=0; i<N; i+=4) {
    a[i+0] = b[i+0] + c[i+0];
    a[i+1] = b[i+1] + c[i+1];
    a[i+2] = b[i+2] + c[i+2];
    a[i+3] = b[i+3] + c[i+3];
}
```

Load b(i..i+3)
Load c(i..i+3)
Operate b+c->a
Store a
Compiling Vector loops

• Intel Compiler:
 – Vectorization starts at optimization level \(-O2\)
 – Will default to SSE instructions and 128-bit vector width
 • use \(-xAVX\) to use AVX and 256-bit vector width. Only runs on newer CPUs
 – Can embed SSE and AVX instructions in the same binary with \(-axAVX\)
 • Will run AVX on CPUs with AVX support, SSE otherwise
 – \(-\text{vec-report}=<n>\) for a vectorization report

• GCC
 – Vectorization is disabled by default, regardless of optimization level
 – Need \(-f\text{tree-vectorize}\) flag, combined with optimization > \(-O2\)
 – SSE by default, \(-mavx\ \-march=corei7-avx\) for AVX
 – \(-f\text{tree-vectorizer-verbose}\) for a vectorization report
Lab: Simple Vectorization

In this lab you will

• Use the Intel compiler to create vectorized with non-vectorized code
• Compare the performance of vectorized vs non-vectorized code
• Compare performance with different vector widths.
• Take an initial look at compiler vectorization reports

• Bonus: What is the vector efficiency (% vector instructions) of the test code? Using Amdal’s law \[P = \frac{\left(\frac{1}{S} - 1\right)}{\left(\frac{1}{n} - 1\right)} \] where P is % parallel (e.g. % vectorized), S is speedup, n is vector length in number of floats/doubles
Lab: Simple Vectorization

<table>
<thead>
<tr>
<th>Compile Options</th>
<th>Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>-no-vec –O3</td>
<td>.67s</td>
<td>1x</td>
</tr>
<tr>
<td>-O3</td>
<td>.37s</td>
<td>1.8x</td>
</tr>
<tr>
<td>-O3 -xAVX</td>
<td>.25s</td>
<td>2.7x</td>
</tr>
</tbody>
</table>

Host CPU

<table>
<thead>
<tr>
<th>Compile Options</th>
<th>Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>-no-vec -mmic -O3</td>
<td>13.22s</td>
<td>1x</td>
</tr>
<tr>
<td>-mmic -O3</td>
<td>2.78s</td>
<td>4.8x</td>
</tr>
</tbody>
</table>

MIC

Notes:
- One MIC thread can only use 50% of a core
- Amdahl’s law for 90% vectorized predicts (1x, 1.8x, 3x, 4.7x)
Challenge: Loop Dependencies

- Vectorization changes the order of computation compared to sequential case
- Compiler must be able to prove that vectorization will produce correct result.
- Need to consider independence of *unrolled* loop operations – depends on vector width
- Compiler performs dependency analysis
Consider the loop:

\[
\begin{align*}
\text{for}(& i=1; \ i<N; \ i++) \\
& a[i] = a[i-1] + b[i];
\end{align*}
\]

Applying each operation sequentially:

\[
\begin{align*}
\text{a[1]} &= \text{a[0]} + \text{b[1]} \rightarrow \text{a[1]} = 0 + 6 \rightarrow \text{a[1]} = 6 \\
\text{a[2]} &= \text{a[1]} + \text{b[2]} \rightarrow \text{a[2]} = 6 + 7 \rightarrow \text{a[2]} = 13 \\
\text{a[3]} &= \text{a[2]} + \text{b[3]} \rightarrow \text{a[3]} = 13 + 8 \rightarrow \text{a[3]} = 21 \\
\text{a[4]} &= \text{a[3]} + \text{b[4]} \rightarrow \text{a[4]} = 21 + 9 \rightarrow \text{a[4]} = 30
\end{align*}
\]

\[a = \{0, 6, 13, 21, 30\}\]
Loop Dependencies: Read After Write

Consider the loop:
\[
\begin{align*}
\text{a} &= \{0,1,2,3,4\} \\
\text{b} &= \{5,6,7,8,9\}
\end{align*}
\]

Applying each operation sequentially:
\[
\begin{align*}
\text{a}[1] &= \text{a}[0] + \text{b}[1] \quad \rightarrow \quad \text{a}[1] = 0 + 6 \quad \rightarrow \quad \text{a}[1] = 6 \\
\text{a}[2] &= \text{a}[1] + \text{b}[2] \quad \rightarrow \quad \text{a}[2] = 6 + 7 \quad \rightarrow \quad \text{a}[2] = 13 \\
\text{a}[3] &= \text{a}[2] + \text{b}[3] \quad \rightarrow \quad \text{a}[3] = 13 + 8 \quad \rightarrow \quad \text{a}[3] = 21 \\
\text{a}[4] &= \text{a}[3] + \text{b}[4] \quad \rightarrow \quad \text{a}[4] = 21 + 9 \quad \rightarrow \quad \text{a}[4] = 30
\end{align*}
\]
\[
\text{a} = \{0, 6, 13, 21, 30\}
\]

for(i=1; i<N; i++)
\[
\text{a}[i] = \text{a}[i-1] + \text{b}[i];
\]
Loop Dependencies: Read After Write

Now let's try vector operations:

a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying vector operations, i={1,2,3,4}:

\begin{align*}
a[i-1] &= \{0,1,2,3\} \quad \text{(load)} \\
b[i] &= \{6,7,8,9\} \quad \text{(load)} \\
\{0,1,2,3\} + \{6,7,8,9\} &= \{6, 8, 10, 12\} \quad \text{(operate)} \\
a[i] &= \{6, 8, 10, 12\} \quad \text{(store)}
\end{align*}

\begin{align*}
a &= \{0, 6, 8, 10, 12\} \neq \{0, 6, 13, 21, 30\} \quad \text{NOT VECTORIZABLE}
\end{align*}

\text{for} (i=1; i<N; i++)
\begin{align*}
a[i] &= a[i-1] + b[i];
\end{align*}
Loop Dependencies: Write after Read

Consider the loop:
\[a = \{0,1,2,3,4\} \]
\[b = \{5,6,7,8,9\} \]

Applying each operation sequentially:
\[
\begin{align*}
 a[0] &= a[1] + b[0] \quad \rightarrow \quad a[0] = 1 + 5 \quad \rightarrow \quad a[0] = 6 \\
 a[1] &= a[2] + b[1] \quad \rightarrow \quad a[1] = 2 + 6 \quad \rightarrow \quad a[1] = 8 \\
\end{align*}
\]
\[a = \{6, 8, 10, 12, 4\} \]
Loop Dependencies: Write after Read

Now let’s try vector operations:

\[a = \{0,1,2,3,4\} \]
\[b = \{5,6,7,8,9\} \]

Applying vector operations, \(i=\{1,2,3,4\} \):

\[a[i+1] = \{1,2,3,4\} \text{ (load)} \]
\[b[i] = \{5,6,7,8\} \text{ (load)} \]
\[\{1,2,3,4\} + \{5,6,7,8\} = \{6, 8, 10, 12\} \text{ (operate)} \]
\[a[i] = \{6, 8, 10, 12\} \text{ (store)} \]

\[a = \{0, 6, 8, 10, 12\} = \{0, 6, 8, 10, 12\} \text{ VECTORIZABLE} \]

\[\text{for}(\ i=0; \ i<N; \ i++) \]
\[\quad a[i] = a[i+1] + b[i]; \]
Loop Dependencies

- **Read After Write**
 - Also called “flow” dependency
 - Variable written first, then read
 - Not vectorizable

- **Write after Read**
 - Also called “anti” dependency
 - Variable read first, then written
 - Vectorizable

```c
for( i=1; i<N; i++ )
    a[i] = a[i-1] + b[i];
```

```c
for( i=0; i<N-1; i++ )
    a[i] = a[i+1] + b[i];
```
Loop Dependencies

• Read after Read
 – Not really a dependency
 – Vectorizable

\[
\text{for } (i=0; i<N; i++) \\
\quad a[i] = b[i\%2] + c[i];
\]

• Write after Write
 – a.k.a “output” dependency
 – Variable written, then re-written
 – Not vectorizable

\[
\text{for } (i=0; i<N; i++) \\
\quad a[i\%2] = b[i] + c[i];
\]
Loop Dependencies: Aliasing

• In C, pointers can hide data dependencies!
 – Memory regions they point to may overlap
• Is this safe?:

```c
void compute(double *a,
             double *b, double *c) {
    for (i=1; i<N; i++) {
        a[i]=b[i]+c[i];
    }
}
```
 – .. Not if we give it the arguments `compute(a, a+1, c);`
 • Effectively, b is really a[i-1] → Read after Write dependency
• Compilers can usually cope, add bounds checking tests (overhead)
Vectorization Reports

• Shows which loops are or are not vectorized, and why
• Intel: -vec-report=<n>
 – 0: None
 – 1: Lists vectorized loops
 – 2: Lists loops not vectorized, with explanation
 – 3: Outputs additional dependency information
 – 4: Lists loops not vectorized, without explanation
 – 5: Lists loops not vectorized, with dependency information
• Reports are essential for determining where the compiler finds a dependency
• Compiler is conservative, you need to go back and verify that there really is a dependency.
Loop Dependencies: Vectorization Hints

- Compiler must prove there is no data dependency that will affect correctness of result
- Sometimes, this is impossible
 - e.g. unknown index offset, complicated use of pointers
- Intel compiler solution: IVDEP (Ignore Vector DEPendencies) hint.
 - Tells compiler “Assume there are no dependencies”

```c
subroutine vec1(s1,M,N,x)
  ...
  !DEC$ IVDEP
  do i = 1,N
    x(i) = x(i+M) + s1
  end do

void vec1(double s1,int M,
           int N,double *x) {
  ...
  #pragma IVDEP
  for(i=0;i<N;i++) x[i]=x[i+M]+s1;
```
Compiler hints affecting vectorization

- For Intel compiler only
- Affect whether loop is vectorized or not
- `#pragma ivdep`
 - Assume no dependencies.
 - Compiler may vectorize loops that it would otherwise think are not vectorizable
- `#pragma vector always`
 - Always vectorize if technically possible to do so.
 - Overrides compiler’s decision to not vectorize based upon cost
- `#pragma novector`
 - Do not vectorize
Loop Dependencies: Language Constructs

- C99 introduced ‘restrict’ keyword to language
 - Instructs compiler to assume addresses will not overlap, ever

    ```c
    void compute(double * restrict a,
                  double * restrict b, double * restrict c) {
        for (i=1; i<N; i++) {
            a[i]=b[i]+c[i];
        }
    }
    ```

- May need compiler flags to use, e.g. `-restrict, -std=c99`
Cache and Alignment

\[
\begin{bmatrix}
 z_1 \\
 z_2 \\
 z_3 \\
 \vdots \\
 z_n
\end{bmatrix}
= \alpha \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_n
\end{bmatrix}
+ \begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 \vdots \\
 y_n
\end{bmatrix}
\]

\[
\text{ymm}_2 \quad \text{ymm}_0 \quad \text{ymm}_1
\]

- Optimal vectorization requires concerns beyond SIMD unit!
 - Registers: Alignment of data on 128, 256 bit boundaries
 - Cache: Cache is fast, memory is slow
 - Memory: Sequential access much faster than random/strided
Strided access

- Fastest usage pattern is “stride 1”: perfectly sequential
- Best performance when CPU can load L1 cache from memory in bulk, sequential manner
- Stride 1 constructs:
 - Iterating Structs of arrays vs arrays of structs
 - Multi dimensional array:
 - Fortran: stride 1 on “inner” dimension
 - C/C++: Stride 1 on “outer” dimension

```c
for(j=0; j<n; j++)
    for(i=0; i<n; i++)
        a[j][i]=b[j][i]*s;
```
Strided access

- Striding through memory reduces effective memory bandwidth!
 - For DP, roughly 1-stride/8
- Worse than non-aligned access. Lots of memory operations to populate a cache line, vector register

```plaintext
*do i = 1,4000000*istride, istride
    a(i) = b(i) + c(i) * sfactor
endo
```
Diagnosing Cache and Memory deficiencies

• Obviously bad stride patterns may prevent vectorization at all:
 – In vector report: "vectorization possible but seems inefficient"
• Otherwise, may be difficult to detect
 – No obvious assembly instructions, other than a proliferation of loads and stores
 – Vectorization performance farther away from ideal than expected
• Profiling tools can help
 – PerfExpert (available at TACC)
 – Visualize CPU cycle waste spent in data access (L1 cache miss, TLB misses, etc)
Conclusion

• Vectorization occurs in tight loops “automatically” by the compiler.
• Need to know where vectorization should occur, and verify that the compiler is doing that.
• Need to know if a compiler’s failure to vectorize is legitimate
 – Fix code if so, use #pragma if not.
• Need to be aware of caching and data access issues
 – Very fast vector units need to be well fed.