
MIC:
Introduction to Xeon Phi

and Symmetric Computing

Presenter: Steve Lantz, CAC

Coauthors: Lars Koesterke

and John Cazes, TACC

Xeon Phi — MIC

• Xeon Phi = first product of Intel’s Many Integrated Core (MIC)
architecture

• Co-processor
– PCI Express card
– Stripped down Linux operating system

• Dense, simplified processor
– Many power-hungry operations removed
– Wider vector unit
– Wider hardware thread count

• Lots of names
– Many Integrated Core architecture, aka MIC
– Knights Corner (code name)
– Intel Xeon Phi Co-processor SE10P (product name)

Xeon Phi — MIC

• Leverage x86 architecture (CPU with many cores)
– x86 cores that are simpler, but allow for more compute throughput

• Leverage existing x86 programming models
• Dedicate much of the silicon to floating point ops
• Cache coherent
• Increase floating-point throughput
• Strip expensive features

– out-of-order execution
– branch prediction

• Widen SIMD registers for more throughput
• Fast (GDDR5) memory on card

Intel Xeon Phi Chip

• 22 nm process

• Based on what
Intel learned
from
– Larrabee

– SCC

– TeraFlops
Research Chip

MIC Architecture

• Many cores on
the die

• L1 and L2 cache
• Bidirectional ring

network for L2
• Memory and

PCIe connection

5

George Chrysos, Intel, Hot Chips 24 (2012):
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012

http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012

George Chrysos, Intel, Hot Chips 24 (2012):
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012

http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012

Speeds and Feeds

• Processor
– ~1.1 GHz
– 61 cores
– 512-bit wide vector unit
– 1.074 TF peak DP

• Data Cache
– L1 32KB/core
– L2 512KB/core, 30.5 MB/chip

• Memory
– 8GB GDDR5 DRAM
– 5.5 GT/s, 512-bit*

• PCIe
– 5.0 GT/s, 16-bit

Stampede Programming Models

• Traditional Cluster
– Pure MPI and MPI+X

• X may be OpenMP, TBB, Cilk+, OpenCL, …

• Native Phi
– Use one Phi and run OpenMP or MPI programs directly

• MPI tasks on Host and Phi
– Treat the Phi (mostly) like another host

• Pure MPI and MPI+X (limited memory: using ‘X’ is almost
mandatory)

• MPI on Host, Offload to Xeon Phi
– Targeted offload through OpenMP extensions
– Automatically offload some library routines with MKL

Traditional Cluster

• Stampede is 2+ PF of FDR-connected Xeon E5

– High bandwidth: 56 Gb/s (sustaining >52 Gb/s)

– Low-latency

• ~1 μs on leaf switch

• ~2.5 μs across the system

• Highly scalable for existing MPI codes

• IB multicast and collective offloads for
improved collective performance

Native Execution

• Build for Phi with -mmic

• Execute on host (runtime will automatically
detect an executable built for Phi)

• … or ssh to mic0 and run on the Phi

• Can safely use all 61 cores
– But: I recommend to use 60 cores, i.e. 60, 120,

180, or 240 threads

– Offload programs should certainly stay away from
the 61st core since the offload daemon runs here

• Host and Phi can operate symmetrically as MPI targets
– High code reuse

– MPI and hybrid MPI+X (X = OpenMP, Cilk+, TBB, pthreads)

• Careful to balance workload between big cores and
little cores

• Careful to create locality between local host, local Phi,
remote hosts, and remote Phis

• Take advantage of topology-aware MPI interface under
development in MVAPICH2
– NSF STCI project with OSU, TACC, and SDSC

Symmetric MPI

Symmetric MPI

• Typical 1-2 GB per task on the host

• Targeting 1-10 MPI tasks per Phi on Stampede

– With 6+ threads per MPI task

– Still 1-2 GB per task, but not per thread

MPI with Offload to Phi

• Existing codes using accelerators have already
identified regions where offload works well

• Porting these to OpenMP offload should be
straightforward

• Automatic offload where MKL kernel routines
can be used

– xGEMM, etc.

MPI with Offload Sections

ADVANTAGES

• Offload Sections may easily be added to hybrid
MPI/OpenMP codes with directives

• Intel compiler will automatically detect and compile
offloaded sections

CAVEATS

• No MPI calls are allowed within offload sections

• Each host task may spawn an offload section

Summary: Advantages of MIC

• Intel’s MIC is based on x86 technology
– x86 cores w/ caches and cache coherency

– SIMD instruction set

• Programming for Phi is similar to programming for CPUs
– Familiar languages: C/C++ and Fortran

– Familiar parallel programming models: OpenMP & MPI

– MPI on host and on the coprocessor

– Any code can run on MIC, not just kernels

• Optimizing for Phi is similar to optimizing for CPUs
– “Optimize once, run anywhere”

– Early Phi porting efforts for codes “in the field” have obtained double the
performance of Sandy Bridge

Will My Code Run on Xeon Phi?

• Yes

• … but that’s the wrong question

– Will your code run *best* on Phi?, or

– Will you get great Phi performance without
additional work? (The answer is most likely NO)

Early Phi Programming Experiences at
TACC

• Codes port easily
– Minutes to days depending mostly on library

dependencies

• Performance can require real work
– While the software environment continues to evolve

– Getting codes to run *at all* is almost too easy; really
need to put in the effort to get what you expect

• Scalability is pretty good
– Multiple threads per core is really important

– Getting your code to vectorize is really important

LBM Example: Native on Phi vs. Host

• Lattice Boltzmann
Method CFD code
– Carlos Rosales,

TACC

– MPI code with
OpenMP

• Finding all the right
routines to
parallelize is critical

PETSc/MUMPS with AO

• Hydrostatic ice
sheet modeling

• MUMPS solver
(called through
PETSc)

• BLAS calls to MKL
automatically
offloaded behind
the scenes*

*Increasing threads doesn’t always help!

More on Symmetric Computing

Run MPI tasks on both MIC and host and across
nodes

• Also called “heterogeneous computing”

• Two executables are required:

– CPU

– MIC

• Currently only works with Intel MPI

• MVAPICH2 support coming

Definition of a Node
A “node” contains a host component and a MIC
component

• host – refers to the Sandy Bridge component

• MIC – refers to one or two Intel Xeon Phi co-
processor cards

host

2x Intel 2.7 GHz E5-2680
16 cores

MIC
1 or 2 Intel Xeon PHI SE10P
61 cores/244 HW threads

NODE

Environment Variables for MIC

By default, environment variables are “inherited” by all
MPI tasks

Since the MIC has a different architecture, several
environment variables must be modified

• LD_LIBRARY_PATH – must point to MIC libraries

• I_MPI_PIN_MODE – controls the placement of tasks

• OMP_NUM_THREADS – # of threads on MIC

• KMP_AFFINITY – controls thread binding

Steps to Create a Symmetric Run

1. Compile a host executable and a MIC
executable:

– mpicc –openmp –o my_exe.cpu my_code.c

– mpicc –openmp –mmic –o my_exe.mic my_code.c

2. Determine the appropriate number of tasks
and threads for both MIC and host:

– 16 tasks/host – 1 thread/MPI task

– 4 tasks/MIC – 30 threads/MPI task

Steps to Create a Symmetric Run
3. Create a batch script to distribute the job

 #!/bin/bash

#--

symmetric.slurm

Generic symmetric script – MPI + OpenMP

#--

#SBATCH -J symmetric # Job name

#SBATCH -o symmetric.%j.out # stdout; %j expands to jobid

#SBATCH -e symmetric.%j.err # stderr; skip to combine stdout and stderr

#SBATCH -p development # queue

#SBATCH -N 2 # Number of nodes, not cores (16 cores/node)

#SBATCH -n 32 # Total number of MPI tasks (if omitted, n=N)

#SBATCH -t 00:30:00 # max time

#SBATCH -A TG-01234 # necessary if you have multiple projects

export MIC_PPN=4

export MIC_OMP_NUM_THREADS=30

ibrun.symm -m ./my_exe.mic –c ./my_exe.cpu

Symmetric Launcher – ibrun.symm

Usage:
ibrun.symm –m ./<mic_executable> -c ./<cpu_executable>

• Analog of ibrun for symmetric execution

• # of MIC tasks and threads are controlled by
env variables

MIC_PPN = <# of MPI tasks/MIC card>

MIC_OMP_NUM_THREADS = <# of OMP threads/MIC MPI task>

MIC_MY_NSLOTS = < Total # of MIC MPI tasks >

Symmetric Launcher

• # of host tasks determined by batch script
(same as regular ibrun)

• ibrun.symm does not support “-o” and “-n”
flags

• Command line arguments may be passed
with quotes

ibrun.symm –m "./my_exe.mic args" –c "./my_exe.cpu args"

• If the executables require redirection or
complicated command lines, a simple shell
script may be used:

ibrun.symm –m ./run_mic.sh –c ./run_cpu.sh

Note: The bash, csh, and tcsh shells are not available on MIC.
So, the MIC script must begin with “#!/bin/sh”

Symmetric Launcher

run_mic.sh run_cpu.sh

#!/bin/sh

a.out.mic <args> < inputfile

#!/bin/sh

a.out.host <args> < inputfile

Thread placement may be controlled with the following
environment variable

• KMP_AFFINITY=<type>

Thread Placement

compact pack threads close to each other

scatter Round-Robin threads to cores

balanced keep OMP thread ids consecutive
(MIC only)

explicit use the proclist modifier to pin threads

none does not pin threads

0 1 2 3 4 5 6 7
compact

0 4 1 5 3 6 2 7
scatter

0 1 2 3 4 5 6 7
balanced

KMP_AFFINITY=balanced (Default for ibrun.symm)

Balance

• How to balance the code?

Sandy Bridge Xeon Phi

Memory 32 GB 8 GB

Cores 16 61

Clock Speed 2.7 GHz 1.1 GHz

Memory
Bandwidth

51.2 GB/s(x2) 352 GB/s

Vector Length 4 DP words 8 DP words

Balance

Example: Memory balance

Balance memory use and performance by using
a different # of tasks/threads on host and MIC

Host
16 tasks/1 thread/task

2GB/task

Xeon PHI
4 tasks/60 threads/task

2GB/task

Balance – Lab Exercise

Example: Performance balance

Balance performance by tuning the # of tasks
and threads on host and MIC

Host
? tasks/? threads/task

?GB/task

Xeon PHI
? tasks/? threads/task

?GB/task

MIC Offloading with OpenMP

• In OpenMP 4.0, accelerator syntax may ultimately be standardized,

• For now, we use special MIC directives for the Intel compilers

• OpenMP pragma is preceded by MIC-specific pragma

– Fortran: !dir$ omp offload target(mic) <...>

– C: #pragma offload target(mic) <...>

• All data transfer is handled by the compiler

– User control provided through optional keywords

• I/O can be done from within offloaded region

– Data can “stream” to the MIC; no need to leave MIC to fetch new data

– Can be very helpful when debugging (just insert print statements)

• Specific subroutines can be offloaded, including MKL subroutines

10/30/2013 www.cac.cornell.edu 33

MIC Example 1

10/30/2013 www.cac.cornell.edu 34

use omp_lib ! Fortran example

integer :: n = 1024 ! Size

real(:,:), allocatable :: a ! Array

integer :: i, j ! Index

real :: x ! Scalar

allocate(a(n,n)) ! Allocation

!dir$ omp offload target(mic) ! Offloading

!$omp parallel shared(a,n), private(x)

!$omp do private(i,j), schedule(dynamic)

do j=1,n

 do i=j,n

 x = real(i + j); a(i,j) = x

#include <omp.h> /* C example */

 const int n = 1024; /* Size of the array */

 int i, j; /* Index variables */

 float a[n][n], x

#pragma offload target(mic)

#pragma omp parallel shared(a,n), private(x)

#pragma omp for private(i,j), schedule(dynamic)

 for(i=0;i<n;i++) {

 for(j=i;j<n;j++) {

 x = (float)(i + j); a[i][j] = x; }}

2-D array (a) is filled with

data on the coprocessor

Data management done

automatically by compiler

• Memory is allocated
on coprocessor for (a)

• Private variables
(x,i,j) are created

• Result is copied back

MIC Example 2

10/30/2013 www.cac.cornell.edu 35

#pragma offload target(mic) //Offload region

#pragma omp parallel

{

 #pragma omp single /* Open File */

 {

 printf("Opening file in offload region\n");

 f1 = fopen("/var/tmp/mydata/list.dat","r");

 }

 #pragma omp for

 for(i=1;i<n;i++) {

 #pragma omp critical

 { fscanf(f1,"%f",&a[i]);}

 a[i] = sqrt(a[i]);

 }

 #pragma omp single

 {

 printf("Closing file in offload region\n");

 fclose (f1);

 }

}

I/O from offloaded region:

• File is opened and

closed by one thread
(omp single)

• All threads take turns

reading from the file
(omp critical)

Threads may also read in

parallel (not shown)

• Parallel file system

• Threads read parts

from different targets

MIC Example 3

10/30/2013 www.cac.cornell.edu 36

! snippet from the caller...

! offload MKL routine to accelerator

!dir$ attributes offload:mic :: sgemm

!dir$ omp offload target(mic)

call sgemm('N','N',n,n,n,alpha,a,n,b,n,beta,c,n)

! offload hand-coded routine with data clauses

!dir$ offload target(mic) in(a,b) out(d)

call my_sgemm(d,a,b)

! snippet from the hand-coded subprogram...

!dir$ attributes offload:mic :: my_sgemm

subroutine my_sgemm(d,a,b)

real, dimension(:,:) :: a, b, d

!$omp parallel do

do j=1,n

 do i=1,n

 d(i,j) = 0.0

 do k=1,n

 d(i,j) = d(i,j)+a(i,k)*b(k,j)

 enddo; enddo; enddo

end subroutine

Two routines, MKL’s
sgemm and my_sgemm

• Both are called with
offload directive

• my_sgemm specifies

explicit in and out

data movement

Use attributes to

have routine compiled for

the coprocessor, or link

coprocessor-based MKL

#pragma omp parallel

 {

#pragma omp single

 { offload(); }

#pragma omp for

 for(i=0; i<N; i++){...}

 }

!$omp parallel

 !$omp single

 call offload();

 !$omp end single

 !$omp do

 do i=1,N; ...

 end do

!$omp end parallel

Heterogeneous Threading, Sequential

10/30/2013 www.cac.cornell.edu 37

wait

Generate

parallel region

idle

threads

offload

single

MPI process,

master thread

workshare

on cpu

C/C++

F90

Heterogeneous Threading, Concurrent

10/30/2013 www.cac.cornell.edu 38

wait

Generate

parallel region

offload

single

nowait

MPI process,

master thread

assist when

done in single

workshare

on cpu

#pragma omp parallel

 {

#pragma omp single nowait

 { offload(); }

#pragma omp for schedule(dynamic)

 for(i=0; i<N; i++){...}

 }

!$omp parallel

 !$omp single

 call offload();

 !$omp end single nowait

 !$omp do schedule(dynamic)

 do i=1,N; ...

 end do

!$omp end parallel

C/C++

F90

