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Putting Performance into Design and Development 

…this talk is about principles and 

practices during the later stages 

of development that lead to better 

performance on a per-core basis 
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What Matters Most in Per-Core Performance 

Good memory locality! 

• Code accesses contiguous memory addresses 

– Reason: data always arrive in cache lines which include neighbors 

– Reason: loops become vectorizable via SSE (explained in a moment) 

• Code emphasizes cache reuse 

– Reason: if multiple operations on a data item are grouped together, the 

item remains in cache, where access is much faster than RAM 

• Data are aligned on doubleword boundaries 

– Reason: items won’t straddle cache lines, so access is more efficient 

Goal: make your data stay in cache as long as possible, so that 

deeper levels of the memory hierarchy are accessed infrequently 

• The above is even more important for GPUs than it is for CPUs 
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Understanding The Memory Hierarchy 
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Functional Units 

L1 Cache 

Registers 

Local Memory 

L2 Cache 

L2 Cache   1 MB 

Memory     1 GB 

L1 Cache 16/32 KB 

Relative Memory Sizes 

L3 Cache Off Die 

~25 GB/s 

~50 GB/s 

Relative Memory Bandwidths 

~12 GB/s 

~8 GB/s 

Processor 

~5 CP 

Latency 

~15 CP 

~300 CP 



What’s the Target Architecture? 

• AMD initiated the x86-64 or x64 instruction set 

– Extends Intel’s 32-bit x86 instruction set to handle 64-bit addressing 

– Encompasses both AMD64 and EM64T = “Intel 64” 

– Differs from IA-64 (now called “Intel Itanium Architecture”) 

 

• Additional SSE instructions access special registers & operations 

– 128-bit registers can hold 4 floats/ints or 2 doubles simultaneously 

– Within an SSE register, “vector” operations can be applied 

– Operations are also pipelined (e.g., load > multiply > add > store) 

– Therefore, multiple results can be produced every clock cycle 

– New with “Sandy Bridge”: Advanced Vector Extensions (AVX), Intel’s 

latest add-ons to the x64 instruction set for 256-bit registers 
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Understanding SSE, SIMD, and Micro-Parallelism 

• For “vectorizable” loops with independent iterations, SSE 

instructions can be employed… 

1/19/2012 www.cac.cornell.edu 6 

SSE = Streaming SIMD 

Extensions  

 

SIMD = Single Instruction, 

Multiple Data 

 

Instructions operate on multiple 

arguments simultaneously, in 

parallel Execution Units  
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Putting Performance into Development: Libraries 

…this talk is about principles and 

practices during the later stages 

of development that lead to better 

performance on a per-core basis 
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Performance Libraries 

• Optimized for specific architectures (chip + platform + system) 

• Offered by different vendors 

– Intel Math Kernel Library (MKL – Ranger and Lonestar) 

– AMD Core Math Library (ACML – Ranger only) 

– ESSL/PESSL on IBM systems 

– Cray libsci for Cray systems 

– SCSL for SGI systems 

• Usually far superior to hand-coded routines for “hot spots”  

– Writing your own library routines by hand is not merely re-inventing the 

wheel; it’s more like re-inventing the muscle car 

– Numerical Recipes books are NOT a source of optimized code: 

performance libraries can run 100x faster 
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HPC Software on Ranger, from Apps to Libs 
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TAU 

PAPI 

… 

AMBER 

NAMD 

GROMACS  

 

GAMESS 

NWChem 

… 

MKL 

ACML 

GSL 

GotoBLAS 

GotoBLAS2 

 

FFTW(2/3) 

ATLAS 

 

Hypre 

NumPy 

… 

PETSc 

SLEPc 

 

PLAPACK 

ScaLAPACK 

 

METIS 

ParMETIS 

 

SPRNG 

… 

 

NetCDF 

HDF5 

 

pNetCDF 

PHDF5 

… 

Applications Parallel Libs Math Libs Input/Output Diagnostics 



Intel MKL 10 (Math Kernel Library) 

• Accompanies Intel compilers: 

– Ranger has MKL 10.0 for the Intel 10.1 compilers 

– Lonestar has MKL 10.3 for the Intel 11.1 compilers 

• Is optimized for the IA-32, Intel 64, Intel Itanium architectures 

• Supports Fortran and C interfaces 

• Includes functions in the following areas: 

– Basic Linear Algebra Subroutines, for BLAS levels 1-3 (e.g., Ax+y) 

– LAPACK, for linear solvers and eigensystems analysis 

– FFT routines 

– Transcendental functions 

– Vector Math Library (VML), for vectorized transcendentals 

– …others 
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Using Intel MKL on Ranger 

• Enable MKL 

– module load mkl 

– module help mkl 
  

• Compile and link for C/C++ or Fortran 
  

mpicc -I$TACC_MKL_INC mkl_test.c -L$TACC_MKL_LIB -lmkl_em64t 
  

mpif90 mkl_test.f90 -L$TACC_MKL_LIB -lmkl_em64t 
  

• Add one more option to run the code without “module load mkl”  
  

-Wl,-rpath,$TACC_MKL_LIB 
  

• Useful website (visit here for Lonestar, e.g.): 

– http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/ 
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GotoBLAS, ATLAS, and FFTW 

GotoBLAS 

• Hand-optimized BLAS, minimizes TLB misses  

• Only testing will tell what kind of advantage your code gets 

 

ATLAS, the Automatically Tuned Linear Algebra Software  

• BLAS plus some LAPACK 

 

FFTW, the Fastest Fourier Transform in the West 

• Cooley-Tukey with automatic performance adaptation 

• Prime Factor algorithm, best with small primes like (2, 3, 5, and 7) 

• The FFTW interface can also be linked against MKL 
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GSL, the GNU Scientific Library 

• Special Functions 

• Vectors and Matrices 

• Permutations 

• Sorting 

• Linear Algebra/BLAS Support 

• Eigensystems 

• Fast Fourier Transforms 

• Quadrature 

• Random Numbers 

• Quasi-Random Sequences 

• Random Distributions 
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• Statistics, Histograms 

• N-Tuples 

• Monte Carlo Integration 

• Simulated Annealing 

• Differential Equations 

• Interpolation 

• Numerical Differentiation 

• Chebyshev Approximation 

• Root-Finding 

• Minimization 

• Least-Squares Fitting 



Putting Performance into Development: Compilers 

…this talk is about principles and 

practices during the later stages 

of development that lead to better 

performance on a per-core basis 
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Compiler Options 
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• There are three important categories: 

– Optimization level 

– Architecture specification 

– Interprocedural optimization 

 

• Generally you’ll want to supply one option from each category 



Let the Compiler Do the Optimization 

• Be aware that compilers can do sophisticated optimization 

– Realize that the compiler will follow your lead 

– Structure the code so it’s easy for the compiler to do the right thing (and 

for other humans to understand it) 

– Favor simpler language constructs (pointers and OO code won’t help) 

 

• Use the latest compilers and optimization options 

– Check available compiler options 
<compiler_command> --help    {lists/explains options} 

– Refer to the User Guides, they usually list “best practice” options 

– Experiment with combinations of options 
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Basic Optimization Level:  -On 

• -O0 = no optimization: disable all optimization for fast compilation 

• -O1 = compact optimization: optimize for speed, but disable 

optimizations which increase code size 

• -O2 = default optimization 

• -O3 = aggressive optimization: rearrange code more freely, e.g., 

perform scalar replacements, loop transformations, etc. 

 

• Note that specifying -O3 is not always worth it… 

– Can make compilation more time- and memory-intensive 

– Might be only marginally effective 

– Carries a risk of changing code semantics and results 

– Sometimes even breaks codes! 
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-O2 vs. -O3 

• Operations performed at default optimization level, -O2 

– Instruction rescheduling 

– Copy propagation 

– Software pipelining 

– Common subexpression elimination 

– Prefetching 

– Some loop transformations 

 

• Operations performed at higher optimization levels, e.g., -O3 

– Aggressive prefetching 

– More loop transformations 
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Architecture: Know Your Chip 

• SSE level and other capabilities depend on the exact chip 

 

• Taking an AMD Opteron “Barcelona” from Ranger as an example… 

– Supports AMD64, SSE, SSE2, SSE3, and “SSE4a” (subset of SSE4) 

– Does not support AMD’s more recent SSE5 

– Does not support all of Intel’s SSE4, nor its SSSE = Supplemental SSE 

 

• In Linux, a standard file shows features of your system’s architecture 

– Do this:   cat /proc/cpuinfo    {shows cpu information} 

– If you want to see even more, do a Web search on the model number 

 

• This information can be used during compilation 
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Specifying Architecture in the Compiler Options 

With -x<code> {code = W, P, T, O, S… } or a similar option, you tell the 

compiler to use the most advanced SSE instruction set for the target 

hardware.  Here are a few examples of processor-specific options.  
  

Intel 10.1 compilers: 

• -xW = use SSE2 instructions (recommended for Ranger) 

• -xO = include SSE3 instructions (also good for Ranger) 

• -xT = SSE3 & SSSE3 (no good, SSSE is for Intel chips only) 

• In Intel 11.0, these become -msse2, -msse3, and -xssse3 

• -xSSE4.2 is appropriate for Lonestar 
  

PGI compilers: 

•  -tp barcelona-64 = use instruction set for Barcelona chip 
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Interprocedural Optimization (IP) 

• Most compilers will handle IP within a single file (option -ip) 

 

• The Intel -ipo compiler option does more 

– It places additional information in each object file 

– During the load phase, IP among ALL objects is performed 

– This may take much more time, as code is recompiled during linking 

– It is important to include options in link command (-ipo -O3 -xW, etc.) 

– All this works because the special Intel xild loader replaces ld 

– When archiving in a library, you must use xiar, instead of ar 
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Interprocedural Optimization Options 

Intel compilers: 

• -ip     enable single-file interprocedural (IP) optimizations 

– Limits optimizations to within individual files 

– Produces line numbers for debugging 

• -ipo   enable multi-file IP optimizations (between files) 

 

PGI compilers: 

• -Mipa=fast,inline enable interprocedural optimization 

   There is a loader problem with this option 
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Other Intel Compiler Options 

• -g             generate debugging information, symbol table 

• -vec_report# {# = 0-5} turn on vector diagnostic reporting –

 make sure your innermost loops are vectorized 

• -C (or -check) enable extensive runtime error checking 

• -CB -CU check bounds, check uninitialized variables 

• -convert kw specify format for binary I/O by keyword {kw =

 big_endian, cray, ibm, little_endian, native, vaxd} 

• -openmp  multithread based on OpenMP directives 

• -openmp_report# {# = 0-2} turn on OpenMP diagnostic reporting 

• -static load libs statically at runtime – do not use 

• -fast same as -O2 -ipo -static; not allowed on Ranger 
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Other PGI Compiler Options 

•  -fast use a suite of processor-specific optimizations:

 -O2 -Munroll=c:1 -Mnoframe -Mlre -Mautoinline 

 -Mvect=sse -Mscalarsse -Mcache_align -Mflushz 

 

•  -mp multithread the executable based on OpenMP 

 directives 

 

•  -Minfo=mp,ipa turn on diagnostic reporting for OpenMP, IP 
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Best Practices for Compilers 

• Normal compiling for Ranger 

– Intel:  

 icc/ifort -O3 -ipo -xW prog.c/cc/f90 

– PGI: 

 pgcc/pgcpp/pgf95 -fast -tp barcelona-64 prog.c/cc/f90 

– GNU: 

 gcc -O3 -fast -xipo -mtune=barcelona -march=barcelona prog.c 

 

• -O2 is the default; compile with -O0 if this breaks (very rare) 

• Effects of Intel’s -xW and -xO options may vary 

• Debug options should not be used in a production compilation!  

– Compile like this only for debugging: ifort -O2 -g -CB test.c 
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Lab: Compiler-Optimized Naïve Code vs. Libraries 

• Challenge: how fast can we do a linear solve via LU decomposition? 

• Naïve code is copied from Numerical Recipes 

• Two alternative codes are based on calls to GSL and LAPACK 

– LAPACK references can be resolved by linking to an optimized library 

like AMD’s ACML or Intel’s MKL  

• We want to compare the timings of these codes when compiled with 

different compilers and optimizations 

– Compile the codes with different flags, including “-g”, “-O2”, “-O3” 

– Submit a job to see how fast the codes run 

– Recompile with new flags and try again 

– Can even try to use the libraries’ built-in OpenMP multithreading 

• Source sits in ~tg459572/LABS/ludecomp.tgz 

1/19/2012 www.cac.cornell.edu 26 



Putting Performance into Development: Tuning 

…this talk is about principles and 

practices during the later stages 

of development that lead to better 

performance on a per-core basis 
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In-Depth vs. Rough Tuning 

In-depth tuning is a long, iterative process: 

• Profile code 

• Work on most time intensive blocks 

• Repeat as long as you can tolerate… 

 

For rough tuning during development: 

• It helps to know about common 

microarchitectural features (like SSE) 

• It helps to have a sense of how the 

compiler tries to optimize instructions, 

given certain features 
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First Rule of Thumb: Minimize Your Stride 

• Minimize stride length 

– It increases cache efficiency 

– It sets up hardware and software prefetching 

– Stride lengths of large powers of two are typically the worst case, 

leading to cache and TLB misses (due to limited cache associativity) 

•  Strive for stride-1 vectorizable loops 

– Can be sent to a SIMD unit 

– Can be unrolled and pipelined 

– Can be parallelized through OpenMP directives 

– Can be “automatically” parallelized (be careful…) 
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G4/5 Velocity Engine (SIMD) 

Intel/AMD MMX, SSE, SSE2, SSE3 (SIMD) 

Cray Vector Units 



The Penalty of Stride > 1 

• For large and small 

arrays, always try to 

arrange data so that 

structures are arrays 

with a unit (1) stride. 
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Bandwidth Performance Code: 

 

do i = 1,10000000,istride 

sum = sum + data( i ) 

end do 

Performance of Strided Access
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Stride 1 in Fortran and C 

• The following snippets of code illustrate the correct way to access 

contiguous elements of a matrix, i.e., stride 1 in Fortran and C  
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Fortran Example: 

 

real*8 :: a(m,n), b(m,n), c(m,n)  

...  

do i=1,n  

   do j=1,m  

      a(j,i)=b(j,i)+c(j,i)  

   end do  

end do  

C Example: 

 

double a[m][n], b[m][n], c[m][n];  

...  

for (i=0;i < m;i++){  

   for (j=0;j < n;j++){  

      a[i][j]=b[i][j]+c[i][j];  

   }  

} 



Second Rule of Thumb: Inline Your Functions 

• What does inlining achieve? 

– It replaces a function call with a full copy of that function’s instructions 

– It avoids putting variables on the stack, jumping, etc. 

 

• When is inlining important? 

– When the function is a hot spot 

– When function call overhead is comparable to time spent in the routine 

– When it can benefit from Inter-Procedural Optimization 

 

• As you develop “think inlining” 

– The C “inline” keyword provides inlining within source 

– Use -ip or -ipo to allow the compiler to inline 
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integer :: ndim=2, niter=10000000 

real*8  :: x(ndim), x0(ndim), r 

integer :: i, j 

   ... 

   do i=1,niter 

      ... 

      r=dist(x,x0,ndim) 

      ... 

   end do 

   ... 

end program 

real*8 function dist(x,x0,n) 

real*8  :: x0(n), x(n), r 

integer :: j,n 

r=0.0 

do j=1,n 

   r=r+(x(j)-x0(j))**2 

end do 

dist=r 

end function 

integer:: ndim=2, niter=10000000 

real*8  :: x(ndim), x0(ndim), r 

integer :: i, j 

   ... 

   do i=1,niter 

      ... 

      r=0.0 

    do j=1,ndim 

         r=r+(x(j)-x0(j))**2 

      end do 

      ... 

   end do 

   ... 

end program 

Example: Procedure Inlining 
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Trivial function dist is 

called niter times 

function dist has been  

inlined inside the i loop 

Low-overhead loop j 

executes niter times 



Best Practices from the Ranger User Guide 

• Avoid excessive program modularization (i.e. too many 

functions/subroutines)  

– Write routines that can be inlined  

– Use macros and parameters whenever possible  

• Minimize the use of pointers  

• Avoid casts or type conversions, implicit or explicit 

– Conversions involve moving data between different execution units  

• Avoid branches, function calls, and I/O inside loops 

– Why pay overhead over and over?  

– Structure loops to eliminate conditionals  

– Move loops into the subroutine, instead of looping around a subroutine 

call 
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More Best Practices from the Ranger User Guide 

• Additional performance can be obtained with these techniques: 

– Memory Subsystem Tuning: Optimize access to the memory by 

minimizing the stride length and/or employing “cache blocking” 

techniques such as loop tiling 

– Floating-Point Tuning: Unroll inner loops to hide FP latencies, and avoid 

costly operations like division and exponentiation 

– I/O Tuning: Use direct-access binary files or MPI-IO to improve the I/O 

performance 

• These techniques are explained in further detail, with examples, in 

the Memory Subsystem Tuning section of the Lonestar User Guide: 

– http://www.tacc.utexas.edu/user-services/user-guides/lonestar-user-

guide#tuning 
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Array Blocking, or Loop Tiling, to Fit Cache 
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Example: matrix-matrix 

multiplication  

real*8 a(n,n), b(n,n), c(n,n) 

do ii=1,n,nb  

   do jj=1,n,nb     

      do kk=1,n,nb       

         do i=ii,min(n,ii+nb-1) 

            do j=jj,min(n,jj+nb-1) 

               do k=kk,min(n,kk+nb-1) 

  

        c(i,j)=c(i,j)+a(i,k)*b(k,j) 

nb x nb nb x nb nb x nb nb x nb 

Takeaway: all the performance libraries do this, so you don’t have to 


