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Abstract
C4 plants, such as maize, concentrate carbon dioxide in a specialized compartment sur-

rounding the veins of their leaves to improve the efficiency of carbon dioxide assimilation.

Nonlinear relationships between carbon dioxide and oxygen levels and reaction rates are

key to their physiology but cannot be handled with standard techniques of constraint-based

metabolic modeling. We demonstrate that incorporating these relationships as constraints

on reaction rates and solving the resulting nonlinear optimization problem yields realistic

predictions of the response of C4 systems to environmental and biochemical perturbations.

Using a new genome-scale reconstruction of maize metabolism, we build an 18000-reac-

tion, nonlinearly constrained model describing mesophyll and bundle sheath cells in 15 seg-

ments of the developing maize leaf, interacting via metabolite exchange, and use RNA-seq

and enzyme activity measurements to predict spatial variation in metabolic state by a novel

method that optimizes correlation between fluxes and expression data. Though such corre-

lations are known to be weak in general, we suggest that developmental gradients may be

particularly suited to the inference of metabolic fluxes from expression data, and we demon-

strate that our method predicts fluxes that achieve high correlation with the data, success-

fully capture the experimentally observed base-to-tip transition between carbon-importing

tissue and carbon-exporting tissue, and include a nonzero growth rate, in contrast to prior

results from similar methods in other systems.

Introduction
C4 photosynthesis is an anatomical and biochemical system which improves the efficiency of
carbon dioxide assimilation in plant leaves by restricting the carbon-fixing enzyme Rubisco to
specialized bundle sheath compartments surrounding the veins, where a high-CO2
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environment is maintained that favors CO2 over O2 in their competition for Rubisco active
sites, thus suppressing photorespiration [1]. C4 plants are geographically and phylogenetically
diverse, and represent the descendants of over 60 independent evolutionary origins of the sys-
tem [2]. They include major crop plants such as maize, sugarcane and sorghum as well as
many weeds and, relative to non-C4 (C3) plants, typically show improved nitrogen and water
use efficiencies [3]. The agricultural and ecological significance of the C4 system and its
remarkable convergent evolution have made it the object of intense study. The core biochemi-
cal pathways are now generally understood [4] but many areas of active research remain,
including the genetic regulation of the C4 system [5], the importance of particular components
of the system to its function (e.g., [6]), the significance of inter-specific variations in C4 bio-
chemistry including alternative pathways for decarboxylation in the bundle sheath [7], details
of the process of C4 evolution, [8–12] and the prospect of increasing yields of C3 crops by arti-
ficially introducing C4 functionality to those species [13, 14].

Mathematical modeling is a proven approach to gaining insight into C4 photosynthesis and
will play an important role in addressing these questions. High-level, nonlinear models of pho-
tosynthetic physiology [15] relating enzyme activities, light and atmospheric CO2 levels, and
the rates of CO2 assimilation by leaves have been widely applied to infer biochemical properties
from macroscopic experiments and explore the responses of C4 plants under varying condi-
tions. (We describe these models as ‘high-level’ since they describe in detail only a few of the
individual biochemical reactions involved in the physiological processes they model, thus oper-
ating at a higher level of abstraction than more detailed kinetic models or genome-scale meta-
bolic reconstructions.) More recently, detailed kinetic models have been used to explore the
optimal allocation of resources to enzymes in an NADP-ME type C4 plant [16] and the rela-
tionship between the three decarboxylation types [17].

Large-scale constraint-based metabolic models offer particular advantages for the investiga-
tion of connections between the C4 system and a plant’s metabolism more broadly (for exam-
ple, partitioning of nonphotosynthetic functions between mesophyll and bundle sheath, or the
evolutionary recruitment of nonphotosynthetic reactions into the C4 cycle) and for interpret-
ing high-throughput experimental data from C4 systems. The standard approach for predict-
ing reaction rates in such models, flux balance analysis (FBA), determines predicted reaction
rates v1, v2, . . . vN by optimizing a biologically relevant function of the rates subject to the
requirement that the system reach an internal steady state,

max
ðv1 ;v2 ;...;vN Þ2RN

f ðvÞ

s:t: S � v ¼ 0;

ð1Þ

where the stoichiometry matrix S is determined by the network structure [18]. However, it is
difficult to incorporate in these calculations the relationship between the rate vc of carbon fixa-
tion by Rubisco and the rate vo of the Rubisco oxygenase reaction, which depends nonlinearly
on the ratio of the local oxygen and carbon dioxide concentrations (here expressed as equiva-
lent partial pressures),

vo
vc

¼ 1

SR

PO2

PCO2

ð2Þ

where SR is the specificity of Rubisco for CO2 over O2. In the C4 case, the CO2 level in the bun-
dle sheath compartment is itself a function of the rates of the reactions of the C4 carbon con-
centration system and the rate of diffusion of CO2 back to the mesophyll.
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With the addition of Eq (2), the problem Eq (1) becomes nonlinear and cannot be solved with
typical FBA tools, which use linear programming methods to analyze a feasible flux cone that is a
convex polytope. Instead, the resulting problem is nonconvex [19] and a general-purpose nonlin-
ear programming algorithm is required to numerically solve it. Such methods are more time-
consuming and require additional care to ensure convergence to an appropriate solution.

While a number of prior constraint-based models of plant metabolism have described pho-
tosynthesis in some detail (e.g, [20–22], among others), such models have typically either
ignored the constraint Eq (2) or assumed the oxygen and carbon dioxide levels PO2 and PCO2
are known and fixed vo/vc accordingly. This approach is suitable for mature C4 leaves under
many conditions (as well as photosynthetic microorganisms with carbon-concentrating mech-
anisms), where vo/vc is approximately zero, or mature C3 leaves, where vo/vc can often be read-
ily predicted from environmental conditions. It cannot be applied, however, to some of the
most interesting targets for simulation: developing tissue, mutants, and C3-C4 intermediate
species, where PCO2 in the bundle sheath compartment is not necessarily high.

In other recent work, a high-level physiological model was used to determine vo, vc, and
other key reaction rates given a few parameters, which were then fixed in order to solve Eq (1)
[11]. This method yields realistic solutions, but its application is limited by the lack of a way to
set the necessary phenomenological parameters (e.g., the maximum rate of PEP regeneration
in the C4 cycle) based on lower-level, per-gene data (e.g., from transcriptomics or experiments
on single-gene mutants).

Here, we treat the problem in a more general way by incorporating the nonlinear constraint
Eq (2) directly into the optimization problem Eq (1) and solving the resulting nonlinear program
numerically with the IPOPT package [23], using a new computational interface that we have
developed, which allows rapid, interactive development of nonlinearly-constrained FBA prob-
lems frommetabolic models specified in SBML format [24]. These computational tools in prin-
ciple allow the incorporation of appropriate nonlinear kinetics into any existing FBAmodel.

We demonstrate the approach using a new genome-scale reconstruction of the metabolic
network of Zea mays, developed with particular attention to photosynthesis and related pro-
cesses, and confirm that the technique reproduces the nonlinear responses of well-validated,
high-level physiological models of C4 photosynthesis [15], while also providing detailed pre-
dictions of fluxes throughout the network.

As noted above, FBA relies on the specification of a relevant objective function that is to be
optimized through the appropriate distribution of metabolic fluxes. In the application of FBA
to single-celled organisms, the traditional objective function chosen has been the rate of bio-
mass production, under the assumption that an organism that is able to grow (and divide)
most quickly will have a fitness advantage over others in a population. As constraint-based
models and FBA have been extended to the realm of multicellular organisms, or to particular
subsystems (pathways, tissues, organs, etc.), a challenge for the metabolic modeling field
broadly has been to identify appropriate objective functions for use in FBA. In this work, we
are using a metabolic model to explore the metabolism of a developing leaf. What is an appro-
priate objective function for this complex biological subsystem? The photosynthetically mature
part of a leaf is presumably organized to some degree to assimilate CO2 at a high rate, but the
metabolism of the developing, immature base is more devoted to cellular growth and differenti-
ation. Our perspective is that different choices of objective functions enable us to probe differ-
ent aspects of leaf physiology, by asking what metabolic flux distributions are most consistent
with CO2 assimilation, biomass production, or agreement with experimental data.

With that preface, in this paper we attempt to use the combined results of enzyme assay
measurements and multiple RNA-seq experiments to to infer the metabolic state at points
along a developing maize leaf (Fig 1a). Although methods of flux prediction based on gene
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expression data have generally performed poorly, we hypothesize that expression and flux may
be more tightly coupled in this system, which motivates the development of a new method,
based on an objective function that rewards consistency between the pattern of expression
change along the developing leaf and the pattern of flux change along the leaf for each reaction.
With this approach, we predict reaction rates in a model of mesophyll and bundle sheath tissue
in fifteen segments of the leaf, interacting through vascular transport of sucrose, glycine, and
glutathione. We compare our predictions to results from radiolabeling experiments.

Results

Metabolic reconstruction of Zea mays
A novel genome-scale metabolic model was generated from version 4.0 of the CornCyc meta-
bolic pathway database [26] and is presented in two forms. The comprehensive reconstruction
involves 2720 reactions among 2725 chemical species, and incorporates CornCyc predictions
for the function of 5204 maize genes, with 2064 reactions associated with at least one gene. A
high-confidence subset of the model, excluding many reactions not associated with manually
curated pathways or lacking computationally predicted gene assignments as well as all reac-
tions which could not achieve nonzero flux in FBA calculations, involves 635 reactions among
603 species, with 469 reactions associated with a total of 2140 genes.

Both the comprehensive and high-confidence models can simulate the production of all
major maize biomass constituents (including amino acids, nucleic acids, fatty acids and lipids,
cellulose and hemicellulose, starch, other carbohydrates, and lignins, as well as chlorophyll)
under either heterotrophic or photoautotrophic conditions and include chloroplast,

Fig 1. Maize plant andmodels. (a) Nine-day-old maize plant (image from [25]). (b) Organization of the two-
cell-type metabolic model, showing compartmentalization and exchanges across mesophyll and bundle
sheath cell boundaries. (c) Combined 121-compartment model for leaf 3 at the developmental stage shown in
(a). Fifteen identical copies of the model shown in (b) represent 1-cm segments from base to tip.

doi:10.1371/journal.pone.0151722.g001
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mitochondrion, and peroxisome compartments, with key reactions of photosynthesis (includ-
ing a detailed representation of the light reactions), photorespiration, the NADP-ME C4 cycle,
and mitochondrial respiration localized appropriately. Gene associations for reactions present
in more than one subcellular compartment have been refined based on the results of subcellular
proteomics experiments and computational predictions (as collected by the Plant Proteomics
Database [27]) to assign genes to reactions in appropriate compartments.

Two alternative sets of biomass production reactions are incorporated in the model. One
system (based closely on iRS1563 [22]) allows the production of biomass components only in a
fixed ratio (as is appropriate in FBA calculations that maximize biomass production.) The
other set of reactions allows individual biomass components to be produced without any con-
straint on their rates, and is used in some calculations below to allow shifts in biomass compo-
sition along the leaf developmental gradient to be predicted based on experimental data.

A model for interacting mesophyll and bundle sheath tissue in the leaf was created by com-
bining two copies of the high-confidence model, with transport reactions to represent oxygen
and CO2 diffusion and metabolite transport through the plasmodesmata, and restricting
exchange reactions appropriately (nutrient uptake from the vascular system to the bundle
sheath, and gas exchange with the intercellular airspace to the mesophyll). A schematic of the
two-cell model is shown in Fig 1b.

Both single-cell versions of the model and the two-cell model, designated iEB5204, iEB2140,
and iEB2140x2 respectively (based on the primary author’s initials and number of genes
included, according to the established naming convention [28]), are available in SBML format
(S1–S3 Models.)

Nonlinear flux-balance analysis
To solve nonlinear optimization problems incorporating the constraints discussed above, we
developed a Python package which—given a model in SBML format, arbitrary nonlinear con-
straints, a (potentially nonlinear) objective function, and all needed parameter values—infers
the conventional FBA constraints of Eq (1) from the structure of the network, automatically
generates Python code to evaluate the objective function, all constraint functions, and their
first and second derivatives, and calls IPOPT through the pyipopt interface [29]. Source code
for the package is available in S1 Protocol and online (http://github.com/ebogart/fluxtools).

As a validation of this nonlinear optimization approach (as well as the two-cell-type model
described above), Fig 2 demonstrates that, if we choose an objective function so as to maximize
the rate of CO2 assimilation with nonlinear kinetic constraints [Eqs (5), (6), (7) below] our
model produces predictions consistent with the results of the physiological model of [15]. Note
that the effective value of one macroscopic physiological parameter may be governed by many
microscopic parameters in the genome-scale model. In the figure, the effective maximum PEP
regeneration rate Vpr is controlled by the maximum rate of three decarboxylase reactions in the
bundle sheath compartment, but with an appropriate choice of parameter values any of at least
10 reactions of the C4 system could become the rate-limiting step in PEP regeneration, and in
the calculations below, expression levels for any of the 42 genes associated with these reactions
(S1 Table) could influence the net PEP regeneration rate. (A fixed biomass composition is used
in these calculations; sucrose is also allowed to be exported freely, so assimilated carbon may be
directed to either sucrose or biomass production.)

Flux predictions in the developing leaf based on multiple data channels
Maize leaves display a developmental gradient along the base-to-tip direction, with young cells
in the immature base and fully differentiated cells at the tip [25, 30]. This developmental
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gradient has recently been studied experimentally with great spatial resolution, identifying
changes in gene expression from leaf base to tip and in cell-type specificity of expression. We
are particularly interested in quantitative changes in metabolic enzyme expression along this
gradient, and the impact of those changes on the leaf metabolic state. We have therefore com-
bined the RNA-seq datasets of Wang et al. [31] and Tausta et al. [32] to estimate expression
levels (as FPKM) for 39634 genes in the mesophyll and bundle sheath cells at 15 locations
along the developmental gradient, representing 1 cm segments of the third leaf of a 9-day-old
maize plant. The combined dataset provides expression information for 920 reactions in the
two-cell model (460 each in mesophyll and bundle sheath cells).

A whole-leaf metabolic model, iEB2140x2x15, was created from fifteen copies of the two-
cell model, each representing a 1-cm segment, interacting through the exchange of sucrose,

Fig 2. CO2 assimilation rates (A) predicted by the C4 photosynthesis model of [15], solid lines, and the present nonlinear genome-scale model
(markers) maximizing CO2 assimilation with equivalent parameters. The nonlinear model incorporates the mesophyll CO2 level as a parameter through
the constraints in Eqs 5, 6 and 7. Left, A vs mesophyll CO2 levels with varying PEPC levels (top to bottom, vp,max = 110, 90, 70, 50, and 30 μmol m-2 s-1).
Right, A vs total maximum activity of all bundle sheath decarboxylase enzymes (equivalent to the maximum PEP regeneration rate Vpr in [15]) at varying
Rubisco levels (top to bottom, vc,max = 70, 60, 50, 40, and 30 μmol m-2 s-1). Other parameters as in Table 4.1 of [15], except with nonphotorespiratory
respiration rates rd = rm = 0.

doi:10.1371/journal.pone.0151722.g002
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glycine, and glutathione through a common compartment representing the phloem. The
resulting 121-compartment model, Fig 1c, involves 18780 reactions among 16575 metabolites.

As noted above, the large-scale transcriptional reprogramming that takes place along the
developing leaf makes specification of a single, biologically relevant objective function not obvi-
ous. Therefore, we have constructed an objective function aimed at identifying flux distribu-
tions that are most consistent with the transcriptional variation occurring along the leaf.
Subject to the requirements that reaction rates in each of the 15 segments obey both the FBA
steady-state constraints (Eq 1) and the constraints governing Rubisco and PEPC kinetics and
CO2 diffusion (Eqs 5, 6 and 7, presented in detail below) we determined the set of rates vij for
each reaction i at each segment j which were most consistent with the base-to-tip variation in
the gene expression data, by minimizing the objective function

FðvÞ ¼
XNr

i¼1

X15
j¼1

esi vij

��� ���� dij

� �2

d2

ij

þ a
XNr

i¼1

s2i
ð3Þ

whereNr = 920 is the number of reactions associated with at least one gene present in the expres-
sion data, dij and δij are the expression data and associated experimental uncertainty for reaction
i at leaf segment j, and si is an optimizable scale factor associated with reaction i. This objective
function was used in all the calculations presented below, except where specifically noted.

Effectively, this method—similar to the method of Lee et al. [33] or FALCON [34]—per-
forms a constrained least-squares fit of the fluxes to the expression data. While the flux through
a reaction catalyzed by an enzyme need not correlate with the expression level of the genes
encoding the enzyme, we hypothesized that this approach could be well-suited to the leaf devel-
opmental gradient in particular, as discussed in detail below.

Allowing the scale factors si to vary emphasizes agreement between fluxes and data in their
trend along the developmental gradient, rather than in their absolute value: if the data associ-
ated with reaction Ri has average value 100 FPKM, a solution in which Ri has mean flux
10 μmol m-2 s-1 but correlates well with the data can achieve (with appropriate choice of scale
factor) a lower cost than a solution in which Ri has mean flux 100 μmol m-2 s-1 but is anticorre-
lated. The penalty term a

P
s2i favors solutions in which, generally, reactions with larger associ-

ated expression data carry higher fluxes. In the current work, these criteria were weighted
equally, with the tradeoff parameter α set to 1. We require sa = sb if reactions a and b are meso-
phyll and bundle sheath instances of the same reaction.

To constrain the overall scale of the fluxes and further improve accuracy, we incorporated
available enzyme activity assay data from [31] for seventeen enzymes (including Rubisco and
PEPC) along the 15 leaf segments as additional constraints on the optimization problem,
requiring for each enzyme k and segment j

Ejk � jvk1j þ . . .þ jvknj ð4Þ

where Ejk is the measured maximal activity of the enzyme at that segment and the sum on the
right hand side includes all the reactions which represent enzyme k in the mesophyll, bundle
sheath, and subcompartments of those cells if applicable.

Solving the optimization problem yielded predictions for reaction rates and other variables
(S2 Table). Upper and lower bounds on selected variables (S3 Table) were determined through
a modified flux variability analysis (FVA) procedure [35] described in S2 Appendix.

Predicted source-sink transition. As shown in Fig 3, in the outer, more photosyntheti-
cally developed, portion of the leaf, our optimal fit predicts net CO2 uptake, with most of the
assimilated carbon incorporated into sucrose and exported to the phloem. Near the base of the
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leaf, sucrose is predicted to be imported from the phloem and used to drive a high rate of bio-
mass production, with some concomitant net release of CO2 to the atmosphere by respiration.

This transition between a carbon-exporting source region and a carbon-importing sink region
is well known, and the predicted transition point between the two, approximately 6 cm above the

Fig 3. Source-sink transition along the leaf as predicted by optimizing the agreement between fluxes
in the nonlinear model and RNA-seq data. Predicted fluxes are obtained by minimizing the objective
function of Eq 3. (a) Predicted rates of exchange of carbon with the atmosphere and phloem along the leaf.
(b) Experimental observation of the source-sink transition, reproduced from [25]. Upper image, photograph of
leaf 3; middle image, autoradiograph of leaf 3 after feeding 14CO2 to leaf 2; lower image, autoradiograph of
leaf 3 after feeding 14CO2 to the tip of leaf 3. (c) Total biomass production in the best-fitting solution. In panels
a and c, dotted lines indicate minimum and maximum predicted rates consistent with an objective function
value no more than 0.1% greater than the optimal value. Here, the biomass composition is allowed to vary
along the leaf; S8 Fig shows corresponding results where the biomass composition is fixed.

doi:10.1371/journal.pone.0151722.g003
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base of the leaf, can be compared to the 14C-labeling results of Li et al. [25] in the same experi-
mental conditions. Fig 3b shows the location of labeled carbon in leaf 3 after feeding labeled CO2

to leaf 2 (center image) or leaf 3 (bottom image, with the dark region above 11.5 cm showing
where label was supplied). Li et al. [25] identified the sink region as the lowest 4 cm of the leaf; the
transition is not perfectly sharp and quantitative comparison of exchange fluxes is not possible,
but the nonlinear FBA results appear to slightly overestimate the size of the sink region. (Note
that these results do not allow direct assessment of spatial variation in the CO2 uptake rate.)

Agreement might be improved under a different assumption about net sucrose import or
export by leaf 3 (here, we have assumed that the import visible in the center image is exactly
balanced by the export suggested by the high density of labeled carbon at the absolute base in
the lower image).

The net rate of CO2 assimilation predicted in the outer, most mature leaf segments,
8–11 μmol m-2 s-1, is lower than that typically measured in more mature maize plants (e.g., rates
of 20–30 μmol m-2 s-1 in 22-day-old wild-type plants under comparable conditions [6]), but
photosynthetic capacity may still be increasing even in these segments.

In addition to sucrose, glycine and glutathione are predicted to be exported from the source
region through the phloem and reimported by the sink region, consistent with our expectations
that nitrogen and sulfur reduction will occur preferentially in the photosynthesizing region (S1
Fig). Note that this behavior emerges from the data even though there is no explicit require-
ment in the model that net phloem transport occur in a basipetal direction.

Predicted C4 system function. Fig 4 shows predicted rates of key reactions of the C4 sys-
tem and CO2 and O2 levels in the bundle sheath. As expected, the model predicts that a C4
cycle will operate in the source region of the leaf, elevating the CO2 level in the bundle sheath.
The CO2 level is also elevated in the source region; this is an immediate consequence of respira-
tion in the bundle sheath and Eq (7). It may be overestimated here because we have assumed a
constant value for the bundle sheath CO2 conductance gs (as measured by Bellasio et al. [36]);
in fact, gene expression associated with synthesis of the diffusion-resistant suberin layer
between bundle sheath and mesophyll peaks at 4 cm above the leaf base [31], gs is presumably
higher below that point.

In the Calvin cycle, most reactions are predicted to be bundle-sheath specific, but the reduc-
tive phase is active in both cells, with approximately half the 3-phosphoglycerate produced in
the bundle sheath transported to the mesophyll and returned as dihydroxyacetone phosphate
(Fig 4c); this is a known aspect of NADP-ME C4 metabolism connected to reduced photosys-
tem II activity in the bundle sheath cells [37], which is also predicted here (S2 Fig). Consistent
with conclusions drawn independently from the transcriptomic data, as well as proteomic data
from the same system [25, 31, 38], the model does not predict a C3-like metabolic state as a
developmental intermediate stage. As expected in maize [39], a significant role for phospho-
enolpyruvate carboxykinase (PEPCK) as a decarboxylating enzyme operating in the bundle
sheath in parallel with NADP-ME is predicted (Fig 4b).

While the predictions are generally consistent with the standard view of the C4 system in
maize, there are minor discrepancies. In the mesophyll, our calculations predict that malate
production occurs in the mitochondrion, rather than the chloroplast. In both mesophyll and
bundle sheath, phosphoenolpyruvate is formed by pyruvate-orthophosphate dikinase (PPDK)
in the chloroplast at a higher rate than necessary to sustain the C4 cycle; the excess is converted
again to pyruvate by pyruvate kinase in the cytoplasm, with the resulting ATP consumed by
the model’s generic ATPase reaction. Finally, in the bundle sheath, a modest rate of PEPC
activity is predicted, recapturing CO2 only to have it released again by the decarboxylases (S3
Fig). Further refinement of the associations of genes to reactions in the model might resolve
some of these discrepancies.

Multiscale Metabolic Modeling of C4 Plants
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Global agreement between fluxes and data. Fig 5 summarizes overall properties of the
predicted fluxes. It is not clear why agreement between data and predicted fluxes is poorer at
the base, as shown in Fig 5a. As discussed below, the cell-type-specific RNA-seq data from
Tausta et al. [32] does not extend below the fourth segment from the base of the leaf; at the
base we have assumed expression levels for all genes are equal in mesophyll and bundle sheath.
Though proteomics experiments on the same system [38] generally found limited cell-type
specificity at the leaf base, this assumption is likely an oversimplification, and could limit the
ability of the algorithm to find a flux prediction consistent with the data there.

Fig 4. Operation of the C4 system in the best-fitting solution, as determined by minimizing the objective function, Eq 3. (a) Rates of carboxylation by
PEPC in the mesophyll and Rubisco in the mesophyll and bundle sheath. (b) Rates of CO2 release by PEP carboxykinase and chloroplastic NADP-malic
enzyme in the bundle sheath. (c) Transport of 3-phosphoglycerate and glyceraldehyde 3-phosphate from bundle sheath to mesophyll (or the reverse, where
negative) and glyceraldehyde 3-phosphate dehydrogenation rate in the mesophyll chloroplast, showing the involvement of the mesophyll in the reductive
steps of the Calvin cycle throughout the source region. (d) Oxygen and carbon dioxide levels in the bundle sheath. Straight lines showmesophyll levels.
Throughout, dotted lines indicate minimum and maximum predicted values consistent with an objective function value no more than 0.1% greater than the
optimal value.

doi:10.1371/journal.pone.0151722.g004
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For most reactions, the correlation between the base-to-tip expression pattern and the base-to-
tip trend in predicted flux is high. The cumulative histogram in Fig 5b shows that the Pearson cor-
relation r> 0.92 for more than half of the reactions in the model with associated expression data.

Differences in expression levels between different reactions, however, correlate only weakly
with the differences in fluxes between those reactions, as shown for segment 15 in Fig 5c (blue
circles). After rescaling fluxes by the optimal per-reaction scale factors, a clear relationship
emerges (Fig 5c, red circles), confirming that the scale factors are functioning as intended. Of
course we should not expect a perfect correlation between data on transcript levels and pre-
dicted fluxes through associated reactions. The limited correlation between fluxes and expres-
sion data across different reactions presumably follows, in part, from the imperfect correlation
between expression data and protein abundance across different genes, as illustrated in Fig 5d

Fig 5. Agreement between RNA-seq data and predicted fluxes. (a) Contribution of each segment to the objective function (Eq (3), excluding costs
associated with scale factors). (b) Cumulative histogram of Pearson correlations between data and predicted fluxes for all reactions. (c) Predicted fluxes
versus expression data at the tip of the leaf (blue, raw fluxes; red, after rescaling each flux vi by the optimal factor esi of Eq (3)). Some outliers with very low
predicted flux are not shown. (d) Relationship between RNA-seq and proteomics measurements for 506 proteins in the 14th segment from the base, redrawn
from the data of [40]. NSAF, normalized spectral abundance factor.

doi:10.1371/journal.pone.0151722.g005
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with data from the same experimental system [40], as well as from the different catalytic capabil-
ities of different enzymes, posttranslational regulation, differences in substrate availability, etc.

Reconciling expression data and network structure. Fig 6 illustrates the operation of the
fitting algorithm in detail, using two regions of the metabolic network with simple structure as
examples.

In Fig 6a, expression data for eight reactions of the pathway leading to chlorophyllide a are
shown. Expression levels for the different reactions at any point on the leaf may span an order
of magnitude or more, but the FBA steady-state assumption requires the rates of all reactions
in this unbranched pathway to be equal at each point. (The branch leading to heme production

Fig 6. Comparison of RNA-seq data to predicted fluxes for a linear pathway and around a metabolic branch point.Upper panels, chlorophyllide a
synthesis in the mesophyll; lower panels, production of arogenate in the bundle sheath by prephenate transaminase and its consumption by arogenate
dehydrogenase and arogenate dehydratase. Left, aggregate RNA-seq data and experimental standard deviations for each reaction rescaled by a uniform
factor (see text). Right, same data and errors further rescaled by reaction-specific optimal factors (e−si, in the variables of Eq 3) to best match data with
predicted fluxes (solid circles). Fluxes are equal for all reactions of the linear pathway (1, uroporphyrinogen decarboxylase, 2, coproporphyrinogen oxidase,
3, protoporphyrinogen oxidase, 4, magnesium chelatase, 5, magnesium protoporphyrin IX methyltransferase, 6, magnesium protoporphyrin IX monomethyl
ester cyclase, 7, divinyl chlorophyllide a 8-vinyl-reductase, 8, protochlorophyllide reductase.) Error bars represent standard deviations of expression
measurements across multiple replicates.

doi:10.1371/journal.pone.0151722.g006
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is not included in the reconstruction.) Applying the optimal rescaling determined for each
reaction’s expression data, shown in panel b, allows the flux prediction for the pathway (solid
dots) to achieve reasonable agreement with the data. (Note that data for reaction 4 cannot be
further scaled down because of the lower limit exp(−5) on its scale factor exp(s4), imposed for
technical reasons.)

Fig 6c shows data for a three-reaction branch point in aromatic amino acid synthesis. To
balance production and consumption of arogenate, the prephenate transaminase flux must
equal the sum of the fluxes through arogenate dehydrogenase (to tyrosine) and arogenate dehy-
dratase (to phenylalanine) but expression is consistently lower for the transaminase than the
other enzymes. After rescaling (Fig 6d), the data agree well with the stoichiometrically consis-
tent flux predictions (solid dots). The predicted ratio of dehydrogenase to dehydratase flux
reflects data for downstream reactions.

Comparison to other methods for integrating RNA-seq data. S4 Fig shows predictions
that result when the scale factors si of Eq (3) are fixed to zero. The source-sink transition is
apparent but the C4 cycle operates at lower levels, the example pathways of Fig 6 (and a num-
ber of others) show little or no activity, and predicted fluxes along the leaf are not as tightly cor-
related with their associated expression data.

S5 Fig shows the metabolic state predicted by applying the expression data for each reaction
as an upper bound on the absolute value of the reaction rate as in the E-Flux method [41] to
the fifteen-segment model with the same RNA-seq data. (Here, the objective function maxi-
mizes CO2 assimilation.) The C4 system is predicted to operate, but no source-sink transition
is apparent, and typical data-predicted flux correlations are poor. Imposing a realistic biomass
composition restores the source-sink transition and somewhat improves correlation between
data and fluxes (S6 Fig). Fluxes predicted by E-Flux are generally smaller than those predicted
by the least-squares method, with or without per-reaction scale factors.

S9 Fig compares the fluxes predicted at the tip by optimizing agreement with the data
through the non-biological objective function Eq (3), fluxes predicted at the tip with an explicit
biological objective function (maximizing CO2 assimilation) constrained by the experimental
data in the E-Flux method, and fluxes predicted in an FBA calculation which ignores the data
entirely (minimizing total flux while achieving the same CO2 assimilation rate as predicted at
the tip by the least-squares method.) Both data-integration methods lead to predictions very
different from the unconstrained FBA calculation.

S10 Fig shows results obtained when the requirement that predicted fluxes obey the kinetic
laws [Eqs (5), (6), (7)] is relaxed. The source-sink transition is still apparent and predictions for
most reactions are similar, but quantitative and qualitative changes in predicted rates of several
key reactions of the C4 system are observed.

Discussion

Fitting metabolic fluxes to expression data
The expression of a gene encoding a metabolic enzyme need not correlate with the rate of the
reaction that enzyme catalyzes. The relationship between transcription and degradation of
mRNA and control of flux is indirect, mediated by protein translation, folding, and degrada-
tion, complex formation, posttranslational modification, allosteric regulation, and substrate
availability. Indeed, as reviewed by [42], experimentally observed correlations among RNA-seq
or microarray data (each itself an imperfect proxy for mRNA abundance or transcription rate),
protein abundance, enzyme activity, and fluxes are variable and often weak.

For example, RNA-seq and quantitative proteomic data obtained from maize leaves at the
same developmental stage studied here, harvested simultaneously from plants grown together,
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showed Pearson correlation approximately 0.6 across the entire dataset, but some significantly
lower values were found when correlations were restricted to genes of particular functional
classes, and measured mRNA/protein ratios for individual genes varied up to 10-fold along the
gradient [40]. A subset of this data is shown in Fig 5d.

The most comprehensive study of the issue in plants so far [43] found so little agreement
between RNA-seq and 13C-MFA data from embryos of two Brassica napus accessions that the
authors concluded the inference of central metabolic fluxes from transcriptomics is, in general,
impossible.

In this light, it is not surprising that methods for integrating transcriptomic data with meta-
bolic models to predict reaction rates have met with limited success. Machado and Herrgård
[44] reviewed 18 such methods and assessed the performance of seven of them on three test
datasets from E. coli and Saccharomyces cerevisiae where experimentally measured intracellular
and extracellular fluxes were available for comparison. None of the methods consistently out-
performed parsimonious FBA simulations which completely ignored transcriptomic data.

Nonetheless, we hypothesized that in the leaf developmental gradient system in particular,
expression levels would correlate enough with fluxes to allow usable predictions to be made
with a careful choice of objective function. Our justification for this hypothesis is twofold.

First, the metabolic transition between the heterotrophic sink region at the base and the
photoautotrophic source region at the tip is particularly dramatic, involving a large number of
reactions which are effectively absent in one region but carry high fluxes in the other [25]; so
long as even a slight correlation between transcript levels and fluxes exists, such a reconfigura-
tion should be apparent from expression data.

Second, although the developing maize leaf is biologically more complex than microbial
growth experiments, the relationship between expression levels and fluxes may be actually be
closer in the leaf. Leaf development is a stereotyped, frequently repeated, relatively slow, one-
way process, in which the precise sequence of events is subject to evolutionary optimization.
Coordination of transcription with required fluxes will lead to efficient use of resources. In con-
trast, the test cases of [44] involve microbial responses to varying environmental conditions
and under- and over-expression mutations. Environmental responses must be rapid, flexible,
and reversible—criteria a complex, scripted transcriptional response may not satisfy—while
transcriptional responses to novel mutations, by definition, cannot have been evolutionarily
optimized. This hypothesis could be tested by evaluating performance of the present method
on RNA-seq data from mutant maize plants, or plants subject to environmental challenges.

Consistent with this hypothesis, in the present work the use of transcriptomic data (and a
limited number of enzyme activity measurements) allowed the correct prediction of a meta-
bolic transition from the base of the leaf to the tip, which could not have been expected based
on FBA calculations alone: without such data, all points along the gradient would be identical,
and the biomass-production-maximizing solution would be the same at each. The predicted
position of the source-sink transition is not perfectly accurate, and the quantitative accuracy of
the model cannot be evaluated until the predicted reaction rates are compared to detailed
experimental flux measurements, but the results are encouraging and suggest that inference of
fluxes from expression data may be more feasible in the specialized context of developmental
shifts in metabolism than it is in general.

Potentially further supporting this idea, we note that methods that did not constrain or maxi-
mize the growth rate predicted zero growth rates in almost all the test cases studied by Machado
and Herrgård [44]. In the present method, the objective function of Eq 3 does not maximize the
growth rate, and we have not constrained the growth rate to be nonzero; nonetheless, the method
consistently predicts nonzero rates of biomass production (whether a flexible biomass composi-
tion is allowed, as above, or the fixed biomass composition is used, as in S7 and S8 Figs).
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Model Reconstruction
Our model is the fourth published genome-scale metabolic reconstruction of the major crop
plant Zea mays, and the first such reconstruction developed solely from maize data sources,
rather than as a direct or indirect adaptation of the Arabidopsis thalianamodel AraGEM [21].

Direct reaction-to-reaction comparison of iEB5204 with C4GEM [45], iRS1563 [22], and its
successor model [46] is difficult because those models use a naming scheme for compounds and
reactions ultimately based on KEGG [47, 48] while this model, like its parent database, uses the
nomenclature of MetaCyc and the BioCyc database collection. The models are broadly similar
in size and biological scope. As published, C4GEM included 1588 reactions associated with
11623 maize genes; iRS1563, 1985 reactions associated with 1563 genes; the model of Simons
et al. [46], 3892 unique reactions and 5824 genes; and iEB5204, 2720 reactions with 5204 genes.
All models can simulate the production of similar sets of basic biomass constituents (including
amino acids, carbohydrates, nucleic acids, lipids and fatty acids, and cell wall components)
under photosynthetic and non-photosynthetic conditions and include key reactions of the C4
cycle. The model of Simons et al. [46] also offers extensive coverage of secondary metabolism.

Our computational methods, discussed below, should allow the incorporation of realistic
Rubisco kinetics into any of the prior genome-scale models of C4 plant metabolism. However,
for the specific goal of integration with transcriptomics data from the leaf developmental gradi-
ent, we found it useful to develop the present model, which has several advantages:

Gene associations The gene associations included in iEB5204 are those presented in CornCyc
[26], which are generated by the PMN Ensemble Enzyme Prediction Pipeline (E2P2) [49], a
homology-based protein sequence annotation algorithm trained on a reference dataset of
experimentally validated enzyme sequences. The E2P2 approach is more comprehensive and
scalable than the development procedures of the previous maize reconstructions (which
involve, for example, obtaining gene associations by transferring annotations from Arabidopsis
genes to their best maize BLAST hits and manually selecting annotations for remaining maize
genes from among BLAST hits in other species.) The entire set of gene associations in the FBA
model may be readily updated based on improvements in the E2P2 prediction algorithm.

High-confidence submodel In developing the fitting algorithm we found that, to obtain plau-
sible metabolic state predictions, a conservative reconstruction was preferable to a compre-
hensive one. For example, early tests with the comprehensive version of the model
suggested that the fitting algorithm often found low-cost solutions involving high fluxes
through reactions which, on investigation, we determined were unlikely to be active in
maize. Because of the model’s connection to the CornCyc database, it was straightforward
to create a reduced, high-confidence version of the model by preferentially excluding reac-
tions not included in any manually curated plant metabolic pathway, even if candidate asso-
ciated genes had been identified computationally, leading to more realistic results.

Reproducibility In an effort to improve the reusability of the model and encourage its applica-
tion to other data sets, we have provided the full source code (S1 and S2 Protocols) for all
calculations presented here, as has been recommended (see, e.g., [50]).

Previous reconstructions do offer two features absent from this model: gene associations for
intracellular transport reactions, and gene associations which take into account the structure of
protein complexes. Both should be considered in future work.

In agreement with [51], we found that building the model starting from a metabolic path-
way database was considerably more straightforward than the standard process of de novo
reconstruction [52]. Reasonable effort was still required to bring the model to a functional state
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by identifying reactions or pathways present in the CornCyc database which could not be han-
dled automatically by the Pathway Tools export facility (for example, because they involved
polymerization, or could not be checked automatically for conservation violations) and deter-
mining how to represent them appropriately in the FBA model.

The model construction process here could readily be adapted to generate metabolic models
describing any of the more than 30 crop and model plant species for which Pathway Tools-
based metabolic pathway databases [53] have been developed by the Plant Metabolic Network
[54], Sol Genomics Network [55], Gramene [56], and others (e.g., [57–59]) allowing the pres-
ent data-fitting method to be applied to RNA-seq data from those organisms. The level of
model development effort required and quality of fit results will vary depending on the extent
of curation of the pathway database and quality of the gene function annotations.

Nonlinear optimization
In contrast to the linear and convex optimization methods employed in nearly all prior con-
straint-based modeling work, general constrained nonlinear optimization algorithms typically
require more effort from the user (who might be required to supply functions which evaluate
the first and second derivatives of all constraints with respect to all variables in the problem).
They are slower, are more sensitive to choices of starting point and problem formulation, are
not guaranteed to converge to an optimal point even if one exists, and, when they do converge
to an optimum, cannot guarantee that it is globally optimal.

The software package we present allows the rapid and effective development of metabolic
models with nonlinear constraints despite these complications. All necessary derivatives of con-
straint functions are taken analytically, and Python code to evaluate them is automatically gener-
ated. A model in SBML format may be imported, nonlinear constraints added and removed, and
the problem repeatedly solved to test various design choices, solver options, and initial points, all
within an interactive session, with a minimum of initial investment of effort in programming.

In the present case, agreement between nonlinear FBA calculations that maximized CO2

assimilation and the predictions of classical physiological models confirmed that the true, glob-
ally optimal CO2 assimilation rate was found successfully. For the data-fitting calculations,
where the true optimal cost is not known, we cannot exclude the possibility that there exist other
optimal solutions, qualitatively distinct from the flux distributions and quasi-optimal regions
presented above, with equivalent or lower costs. In practice, we encountered occasional cases in
which reaction or pathway fluxes were initially predicted to be zero even when associated with
nonzero data, despite the existence of a superior alternative solution with nonzero predicted
fluxes. A step to detect and correct these situations was incorporated into the fitting algorithm.

Many future applications for the software are possible. Our approach to Rubisco kinetics
may easily be extended to other models of C4 metabolism or, more generally, to any FBA calcu-
lation in a photosynthetic organism where the CO2 level at the Rubisco active site, and thus the
Rubisco oxygenation/carboxylation ratio, is not known a priori. A published genome-scale
metabolic reconstruction of the model alga Chlamydomonas reinhardtii, for example, was iden-
tified by the authors as being deficient in describing algal metabolism under low CO2 condi-
tions due to the fact that the Rubisco carboxylase and oxygenase fluxes were treated as
independent and not (as we have done here) competitive [60].

Ensuring that rates of Rubisco oxygenation, Rubisco carboxylation, and PEPC carboxylation
are consistent with our knowledge of their kinetics is a special case of the more general problem
of integrating kinetic and constraint-based modeling. Diverse approaches to this issue have
been extensively developed, including dynamic FBA [61], k-OptForce [62], genome-scale
kinetic modeling [63, 64], and others (e.g., [65–67]). To our knowledge, no prior work has
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simply imposed kinetic laws as additional, nonlinear constraints in the ordinary FBA optimiza-
tion problem. Our results demonstrate the potential of this approach in systems where the
kinetics of a few well-understood reactions are crucial. It remains to be seen how many kinetic
laws may be incorporated in this way at once, and to what extent their introduction usefully
constrains the space of possible steady-state flux distributions even when relevant kinetic
parameters are not known (but instead are treated as optimizable variables, an approach with
connections to ensemble kinetic modeling [68]).

Nonlinear constraints may also be of use in enforcing thermodynamic realizability of flux
distributions, and relaxing requirements of linearity or convexity may stimulate the develop-
ment of novel objective functions—either for data integration purposes, as here, or as alterna-
tives to growth-rate maximization.

The whole-leaf model
Large-scale metabolic models of interacting cells of multiple types first appeared in 2010, with
C4GEM [45] and a model of human neurons interacting with their surrounding astrocytes
[69]. Many more complex multicellular FBA models have since appeared, including studies of
the metabolism of interacting communities of microbial species in diverse natural environ-
ments or artificial co-cultures [70–76] (also [77] at a smaller scale) and of the metabolic capaci-
ties of host animals and their symbionts [78] or parasites [79]. In plants, diurnal variation in
C3 and CAM plant metabolism has been simulated with a model which represents different
phases of the diurnal cycle with different abstract compartments, with transport reactions rep-
resenting accumulation of metabolites over time [80].

In the most direct antecedent of the present work, Grafahrend-Belau and coauthors developed
a multiscale model of barley metabolism [81] which represented leaf, stem, and seed organs as
subcompartments of a whole-plant FBA model, with nutrients exchanged through the phloem.
Combining the FBAmodel with a high-level dynamic model of plant metabolism allowed them
to predict changes in metabolism over time, including the transition between a biomass-produc-
ing sink state and a fructan-remobilizing source state in the stem late in the plant’s life cycle.

The whole-leaf model presented here occupies an intermediate position between prior C4
models, with single mesophyll and bundle sheath cells, and multi-organ whole-plant models
such as [81]. It represents the first attempt to model spatial variations in metabolic state within
a single organ, allowing the study of developmental transitions in leaf metabolism by incorpo-
rating data from more and less differentiated cells at a single point in time, rather than model-
ing development dynamically.

Other interacting cell models incorporate a priori qualitative differences in the metabolic
capabilities of their components (e.g., leaf, stem, and seed, or neurons and astrocytes). In con-
trast in the work presented here, in order to allow the metabolic differences between any two
adjacent points to be purely quantitative, the same metabolic network must be used for all
points. This simplifies the process of model creation but implies that meaningful predictions of
spatial variation depend entirely on the integration of (spatially resolved) experimental data. The
ability of the model to capture the experimentally observed shift from sink to source tissue along
the developmental gradient based on RNA-seq and enzyme activity measurements shows that
this may be done successfully with high-resolution -omics data and careful model construction.

Methods

Reconstruction process
A local copy of CornCyc 4.0 [26] was obtained from the Plant Metabolic Network and a draft
metabolic model was created using the MetaFlux module of Pathway Tools 17.0 [51]. The
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resulting model, including reaction reversibility information, was converted to SBML format
and iteratively revised, as described in detail in S1 Appendix, until all desired biomass compo-
nents could be produced under both heterotrophic and photosynthetic conditions and realistic
mitochondrial respiration and photorespiration could operate.

An overall biomass reaction was adapted from iRS1563 [22] with minor modifications to com-
ponents and stoichiometry, as detailed in S1 Appendix. To allow calculations with flexible bio-
mass composition, individual sink reactions were added for most species participating in the
biomass reaction, as well as several relevant species (including chlorophyll) not originally included
in the iRS1563 biomass equation, for which synthesis pathways were identified in CornCyc.

Core metabolic pathways were assigned appropriately to subcellular compartments (e.g., the
TCA cycle and mitochondrial electron transport chain to the mitochondrion; the light reac-
tions of photosynthesis, the Calvin cycle, and some reactions of the C4 cycle to the chloroplast;
and some reactions of the photorespiratory pathway to the peroxisome) and the intracellular
transport reactions necessary for their operation were added.

The model was thoroughly tested for consistency and conservation violations, confirming
that no species could be created without net mass input or destroyed without net mass output
(except species representing light, which can be consumed to drive futile cycles.)

The base metabolic model iEB5204 is provided in SBML format as S1 Model. Gene associa-
tion rules for reactions with associated genes in CornCyc are provided following COBRA con-
ventions [82]. Additional annotations give the record in the CornCyc database associated with
each reaction and species, where applicable.

To produce the higher-confidence version of the reconstruction, iEB2140 (S2 Model), reac-
tions in the base model which were not associated with any identified metabolic pathway in
CornCyc, and those for which no genes for a catalyzing enzyme had been identified by compu-
tational function prediction, were removed from the model if their removal did not prevent
photosynthesis, photorespiration, or the production of any biomass component. Then, all reac-
tions which could not achieve nonzero steady-state rates were removed.

Mesophyll-bundle sheath model
Amodel for leaf tissue (S3 Model) was created by taking two copies of the high-confidence
model, representing mesophyll and bundle sheath cells, and adding reactions representing
transport through the plasmodesmata which connect the cytoplasmic spaces of adjacent cells.
For details, see S2 Appendix.

Physiological constraints
Rubisco carboxylase and oxygenase rates vc and vo in mesophyll and bundle sheath chloroplasts
were constrained to obey Michaelis-Menten kinetic laws with competitive inhibition,

vc ¼ vc;max CO2½ �
CO2½ � þ kc 1þ O2½ �

ko

� �

vo ¼ vo;max O2½ �
O2½ � þ ko 1þ CO2½ �

kc

� � ;

ð5Þ

and the relationship vo, max/vc, max = kO/(kC � SR) was imposed, from which Eq (2) follows [15].
The Michaelis-Menten constants for oxygen and carbon dioxide kC and kO and the Rubisco
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specificity SR were set to values typical of C4 species: kC, 650 μmol mol-1; kO, 450 mmol mol-1;
SR, 2590 [15].

The rate of PEP carboxylation in the mesophyll was governed by an appropriate kinetic law,

vp ¼
vp;max CO2½ �
kC;p þ CO2½ � ð6Þ

with an appropriate kC,p (80mmol mol-1, [15]).
The parameters vpmax and vc,max representing the total amount of Rubisco and PEPC avail-

able may be fixed to permit comparison to models parameterized in those terms or allowed to
vary.

Rates of oxygen and carbon dioxide diffusion from the bundle sheath to the mesophyll, L
and LO, were constrained to obey the relationship

L ¼ gs CO2;BS � CO2;ME

� �

LO ¼ gs;O O2;BS � O2;ME

� � ð7Þ

with the bundle sheath oxygen conductance gs, O set to 0.047gs, where gs is the bundle sheath
CO2 conductance [15]. All simulations used the bundle sheath CO2 conductance measured by
[36] for maize plants grown under high light, 1.03±0.18 μmol m-2 s-1. While gs undoubtedly
varies along the developmental gradient, its deviation from this value (measured in fully-
expanded leaves, 3-4 weeks after planting) is likely greatest below the region of high suberin
synthesis identified 4 cm from the leaf base [31]; as the C4 cycle was not predicted to operate at
high rates in this region, the impact of this discrepancy should be limited.

Resistance to CO2 diffusion from the intercellular airspace to the mesophyll cells was
neglected; ref. [83] reported the relevant conductance was approximately 1 mmol m-2 s-1 in
maize under a variety of conditions, suggesting the mesophyll and intercellular CO2 levels
would differ only slightly at the rates of CO2 assimilation and release dealt with here. Similarly,
all intracellular compartments were taken to have equal CO2 concentrations.

Optimization calculations
The nonlinear modeling package uses the libsbml python bindings to read SBML files [84] and
an internal representation of SBML models derived from the SloppyCell package [85, 86].
IPOPT calculations used version 3.11.8 with the linear solver ma97 from the HSL Mathemati-
cal Software Library [87]. Where not specified, convergence tolerance was 10−5, or 10−4 in FVA
calculations. To solve purely linear problems (e.g., to test the production of biomass species
during the reconstruction process, where nonlinear constraints were not used) the GNU Linear
Programming Kit, version 4.47 [88], was called through a Python interface [89].

Comparison with other models
Python code used to calculate the predictions of the models of von Caemmerer [15] for com-
parison with nonlinear optimization results is provided in S2 Protocol.

Integrating biochemical and RNA-seq data
RNA-seq datasets. To obtain mesophyll- and bundle-sheath-specific expression levels at

15 points, we combined the non-tissue-type-specific data of Wang et al. [31], measured at
1-cm spatial resolution, with the tissue-specific data of Tausta et al. [32] obtained by using
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laser capture microdissection (LCM)—measured 4 cm, 8 cm and 13 cm from the leaf base (the
upper three highlighted positions in Fig 3b), as explained in S2 Appendix.

Enzyme activity measurements. The full list of reaction rates constrained by enzyme
activity measurements from [31] is given in S2 Appendix.

Handling reversible reactions. The objective function (Eq (3)) optimizes the agreement
between the absolute value of the flux through each reaction with its data. The resulting optimi-
zation problem cannot be solved directly with the methods used here because the absolute
value function is not continuously differentiable. To circumvent this limitation, directions for
reactions considered reversible (based on information from CornCyc [26]) were determined in
a heuristic method similar in spirit to that of [33], detailed in S2 Appendix.

Supporting Information
S1 Fig. Phloem transport. Transport of nitrogen (upper panel) and sulfur (lower panel)
through the phloem in the best-fitting solution. Dotted lines indicate minimum and maximum
predicted values consistent with an objective function value no more than 0.1% worse than the
optimum.
(PDF)

S2 Fig. Photosystem II in mesophyll and bundle sheath. Dashed and dotted lines indicate
minimum and maximum predicted values consistent with an objective function value no more
than 0.1% worse than the optimum.
(PDF)

S3 Fig. Bundle sheath PEPC flux in the best-fitting solution. Dotted lines indicate minimum
and maximum predicted values consistent with an objective function value no more than 0.1%
worse than the optimum.
(PDF)

S4 Fig. Summary of predictions for the gradient model using the least-squares method
without per-reaction scale factors. In Eq (3), si = 0 for all reactions i. (a) Sucrose and CO2

uptake rates (compare to Fig 3a). (b) Rates of carboxylation by PEPC and Rubisco (compare to
Fig 4b). (c) Predicted rate for the reactions of the chlorophyllide A synthesis pathway (compare
to Fig 6b). (d) Predicted rates at the arogenate branch point (compare to Fig 6d). (e) Predicted
oxygen and carbon dioxide levels in the bundle sheath, with straight lines showing mesophyll
levels (compare to Fig 4d). (f) Distribution of correlation coefficients between data and pre-
dicted fluxes for each reaction. (blue, this method; red, standard method.) Correlation coeffi-
cients for reactions with zero predicted flux are taken to be zero, resulting in the visible peak in
the histogram.
(PDF)

S5 Fig. Summary of predictions for the gradient model using the E-Flux method. For expla-
nation of each panel, see S4 Fig.
(PDF)

S6 Fig. Summary of predictions for the gradient model using the E-Flux method with fixed
biomass composition. The biomass composition is fixed to that used by iRS1563, as adapted
(see S1 Appendix). For explanation of each panel, see S4 Fig. Note that the chlorophyllide A
synthesis pathway is blocked when the fixed biomass composition is used.
(PDF)
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S7 Fig. Summary of predictions for the gradient model with fixed biomass composition.
For explanation of each panel, see S4 Fig. Note that the chlorophyllide A synthesis pathway is
blocked when the fixed biomass composition is used.
(PDF)

S8 Fig. Predicted biomass production rates in mesophyll and bundle sheath cells with fixed
biomass composition.
(PDF)

S9 Fig. Predicted variable values in an FBA calculation that does not incorporate expres-
sion data, compared to the best-fit and E-Flux methods. The FBA calculation minimizes
total flux while achieving the same total rate of CO2 assimilation as predicted at the tip of the
leaf in the fitting results. Left panel, FBA reaction rates vs. reaction rates predicted at the tip of
the leaf in the best-fitting solution; right panel, FBA reaction rates vs. reaction rates predicted
at the tip of the leaf by the E-Flux method. Axis limits exclude a small number of reactions of
particularly large flux. Fluxes in μmol m-2 s-1.
(PDF)

S10 Fig. Summary of predictions for the gradient model, omitting nonlinear kinetic law
constraints. Effects of relaxing the requirement that predicted PEPC, Rubisco, and oxygen and
carbon dioxide obey the kinetic laws of Eqs (5), (6) and (7). For details, see S2 Appendix. (a)
Sucrose and CO2 uptake rates (compare to Fig 3a). (b) Rates of carboxylation by PEPC and
Rubisco. PEPC activity increases more uniformly along the gradient, compared to the results
shown in Fig 4a. (c) Predicted rates of bundle sheath decarboxylation reactions, showing
increased PEPCK activity compared to the results shown in Fig 4b. (d) Predicted rates of oxy-
genation by Rubisco in the bundle sheath, with and without nonlinear kinetic laws. (e) Pre-
dicted rates of diffusion of carbon dioxide from bundle sheath to mesophyll, with and without
nonlinear kinetic laws. (f) Cumulative histogram of correlation coefficients for fluxes of each
reaction along the leaf gradient, predicted with and without nonlinear kinetic laws.
(PDF)

S11 Fig. Predicted rates of production of selected subcategories of biomass components
along the leaf gradient, illustrating the model’s capability to simulate variations in biomass
composition. (a) Predicted production of cellulose, amino acids, nucleic acids, and lipids and
fatty acids all show a pronounced peak at the base of the leaf and are higher in the predicted
heterotrophic source region, consistent with the interpretation of this region as an area of
active cell growth and division. (b) In contrast, predicted chlorophyll production is relatively
steady along the leaf, while ascorbate production increases from the source-sink transition to
the tip of the leaf.
(PDF)

S1 Appendix. Details of the metabolic model development process.
(PDF)

S2 Appendix. Implementation details.
(PDF)

S3 Appendix. Information on the model’s two alternative sets of biomass-producing reac-
tions, and related reactions and constraints.
(TXT)

S1 Table. Detailed parameters contributing to the effective PEP regeneration rate: reac-
tions in the genome-scale model which contribute to the effective maximum PEP
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regeneration capacity, and the number of genes associated with each. In addition to the reac-
tions listed, transport capacities of pyruvate, PEP, alanine, aspartate and malate across the plas-
modesmata and pyruvate, PEP, malate and oxaloacetate across the chloroplast inner
membrane could limit this rate; the model currently associates no genes with these transport
reactions.
(PDF)

S2 Table. Predicted variable values along the leaf gradient. To assess the precision with
which the model predicts the value of any variable requires a separate optimization calculation,
which has been done only for the subset of variables for which upper and lower bounds are
given in S3 Table below; thus the appropriate number of significant figures to which these val-
ues should be reported is not clear, but will generally be fewer than have been given here. These
predictions were made using the set of biomass reactions that allows flexible biomass composi-
tion; the set of biomass reactions corresponding to a fixed biomass composition thus have zero
fluxes. See S3 Appendix for further details.
(TXT)

S3 Table. Upper and lower bounds on predicted values of selected variables along the leaf
gradient, from FVA calculations.
(TXT)

S4 Table. Input data for the flux prediction calculations. Sheet 1, RNA-seq data (FPKM)
from the experiments of Wang et al [31] (nonconsecutive segment order present in original.)
Sheet 2, RNA-seq data (in RPKM) from the experiments of Tausta et al [32]. Sheet 3, cell-type-
specific expression estimates (in FPKM) obtained by combining the data of sheets 1 and 2 as
described in section 3 of S2 Appendix. Sheet 4, estimated standard deviations (in FPKM) for
the expression estimates of sheet 3, obtained as described in section 3 of S2 Appendix. Sheet 5,
data associated with reactions in the model by combining the data from their associated genes
in sheet 3 and rescaling, as described in section 3 of S2 Appendix. (These are the values dij in
Eq 3). Note in some cases this data is not associated with a reaction rate, but instead a parame-
ter in a kinetic law constraint (for example, expression data for PEP carboxylase in the meso-
phyll is associated with ms_active_pepc, the model’s internal term for vp,max of Eq 6).
Sheet 6, standard deviations associated with the data of sheet 3, obtained from the standard
deviations in the expression estimates of genes associated with each reaction (sheet 4) as
described in section 3 of S2 Appendix. (These are the values δij in Eq 3). Sheet 7, enzyme activ-
ity data fromWang et al [31], rescaled as described in section 4 of S2 Appendix. Units are
micromole per second per square meter of leaf surface area. These are the values Ejk in Eq 4.
Sheet 8, table of reactions in the model constrained by the activity data for each enzyme. Note
that in some cases reaction rates are not constrained directly; instead, the constraint is applied
to parameters in kinetic law constraints. For example, data for rubisco is used to constrain the
sum of ms_active_rubisco and bs_active_rubisco, the model’s internal variables
corresponding to vc,max in Eq 5 in mesophyll and bundle sheath compartments.
(XLSX)

S1 Model. iEB5204 in SBML format.
(XML)

S2 Model. iEB2140 in SBML format.
(XML)

S3 Model. iEB2140x2 in SBML format.
(XML)
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S1 Protocol. Source code for the nonlinear constraint-based modeling package fluxtools.
(GZ)

S2 Protocol. Source code and input files for the calculations discussed above.
(GZ)
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