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Manycore, not Manticore... 
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CPU Speed and Complexity Trends 
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Committee on Sustaining Growth in Computing Performance, National Research Council.  

"What Is Computer Performance?"  

In The Future of Computing Performance: Game Over or Next Level?  

Washington, DC: The National Academies Press, 2011. 

discontinuity in ~2004 



How TACC Stampede Reached ~10 Petaflop/s 

• 2+ petaflop/s of Intel Xeon E5 

• 7+ additional petaflop/s of Intel 

Xeon Phi™ SE10P coprocessors  

• Follows the hardware trend of the 

last 10 years: processors gain 

cores (execution engines) rather 

than clock speed 

• So is Moore’s Law dead? No! 

– Transistor densities are still doubling every 2 years 

– Clock rates have stalled at < 4 GHz due to power consumption 

– Only way to increase flop/s/watt is through greater on-die parallelism 

• Architectures must move from multi-core to manycore 
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Photo by TACC, June 2012 



Manycore Elements in Petaflop/s Machines 

• CPUs: Wider vector units, more cores 

– General-purpose platform 

– Single-thread performance emphasis 

– Example, dual E5-2680 on Stampede: 0.34 Tflop/s, 260W 

• GPUs: Thousands of very simple stream processors 

– Special multithreading APIs: CUDA, OpenCL, OpenACC 

– High floating-point throughput  

– Example, Tesla K20 on Stampede: 1.17 Tflop/s, 225W 

• MICs: Dozens of CPU cores optimized for floating-point efficiency 

– General-purpose codes will run (like CPU) 

– High floating-point throughput for multithreaded code (like GPU) 

– Example, Xeon Phi SE10P on Stampede: 1.06 Tflops/s, 300W 
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Xeon Phi: What Is It? 

• Complete system on PCIe card (Linux OS, processor, memory) 

• x86-derived processor featuring large number of simplified cores 

– Many Integrated Core (MIC) architecture 

• Optimized for floating point throughput 

– Lots of floating-point operations per second (flop/s) for HPC 

• Modified 64-bit x86 instruction set 

– Code compatible (C, C++, Fortran) after re-compile 

– Not binary compatible with x86_64 

• Intel’s answer to general purpose GPU (GPGPU) computing 

– Similar flop/s/watt to GPU-based products like NVIDIA Tesla 
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Power-Saving Choices in the Xeon Phi Design 

• Reduce clock speed 

• Omit power-hungry features 

such as branch prediction, 

out-of-order execution 

• Simplify instruction decoder, 

but maintain high instruction 

rate via 2–4 threads per core 

• Eliminate a shared L3 cache 

in favor of coherent L2 caches 

• And add... lots of cores! 

• These factors tend to degrade 

single-thread performance, so 

multithreading is essential 
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MIC vs. CPU 

 

Number of cores 

Clock speed (GHz) 

SIMD width (bits) 

DP Gflop/s/core 

HW threads/core 
 

 

• CPUs designed for all workloads, high single-thread performance  

• MIC also general purpose, though optimized for number crunching 

– Focus on high aggregate throughput via lots of weaker threads 

– Possible to achieve >2x performance compared to dual E5 CPUs 

MIC (SE10P) CPU (E5) MIC is… 

61 8 much higher 

1.01 2.7 lower 

512 256 higher 

16+ 21+ lower 

4 1* higher 
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Two Types of MIC (and CPU) Parallelism 

• Threading (task parallelism) 

– OpenMP, Cilk Plus, TBB, Pthreads, etc. 

– It’s all about sharing work and scheduling  

• Vectorization (data parallelism) 

– “Lock step” Instruction Level Parallelization (SIMD)  

– Requires management of synchronized instruction execution 

– It’s all about finding simultaneous operations 

• To fully utilize MIC, both types of parallelism need to be identified 

and exploited 

– Need 2–4+ threads to keep a MIC core busy (in-order execution stalls) 

– Vectorized loops gain 8x or 16x performance on MIC! 

– Important for CPUs as well: gain of 4x or 8x on Sandy Bridge 
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Parallelism and Performance on MIC and CPU 
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Courtesy James Reinders, Intel 



• PCIe card with Intel 

Xeon Phi™ (MIC) 

• Host with dual Intel Xeon 

“Sandy Bridge” (CPU) 

Typical Configuration of a Stampede Node 

Linux OS Linux 

micro OS 

PCIe 

HCA 

Access from network: 

ssh <host> (OS) 

ssh <coprocessor> 

       (mOS) 

Virtual IP* 

service for MIC 
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Offload Execution Model 
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Courtesy Scott McMillan, Intel 

• OpenMP-like directives 

indicate which data and 

functions to send from CPU 

to MIC for execution 

• Unified source code  

• Code modifications required 

• Compile once  

• Run in parallel using MPI 

(Message Passing Interface) 

and/or scripting, if desired 



“Symmetric” Execution Model 
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• Message passing (MPI) on 

CPUs and MICs alike 

• Unified source code 

• Code modifications advisable 

– Multithread with OpenMP  or 

Threaded Building Blocks 

– Assign different work to 

CPUs vs. MICs 

• Compile twice, 2 executables 

– One native to host 

– One native to MIC 

• Run in parallel using MPI 

 Courtesy Scott McMillan, Intel 



Application: High Energy Physics 
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Collaborators 

K.McDermott, 

D.Riley, 

P.Wittich 

  (Cornell); 
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M.Tadel, 

F.Würthwein, 
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P.Elmer 

  (Princeton) 

 

Photo 

CMS detector, 

LHC, CERN 



LHC: It’s a Collider!... 
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The Large Hadron Collider 

smashes beams of protons 

into each other, as they go 

repeatedly around a ring 

17 miles in circumference 

at nearly the speed of light 



Collision Energy Becomes Particle Masses: E=mc2 
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CMS: Like a Fast Camera for Identifying Particles 
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Particles interact differently, so CMS is a detector with different layers to 

identify the decay remnants of Higgs bosons and other unstable particles 



Big Data Challenge 

11/17/2015 www.cac.cornell.edu 18 

• 40 million collisions a second 

• Most are boring 

– Dropped within 3 μs 

• Higgs events: super rare 

– 1016 collisions → 106 Higgs 

– Maybe 1% of these are found 

 

 

 

• Ultimate “needle in a haystack” 

• “Big Data” since before it was 

cool 

 
http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html 

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html


For Interesting Events: Tracking 

• Goal is to reconstruct the trajectory (track) of each charged particle 

• Solenoidal B field bends the trajectory in one plane (“transverse”) 

• Trajectory is a helix described by 5 parameters, pT, η, φ, z0, d0 

• We are most interested in high-momentum (high-pT) tracks  

• Trajectory may change due to interaction with materials 

• Ultimately we care mainly about: 

– Initial track parameters 

– Exit position to the calorimeters 

 

• We use a Kalman Filter-based technique 
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Why Kalman Filter for Particle Tracking? 

• Naively, the particle’s trajectory 

is described by a single helix 

• Forget it 

– Non-uniform B field 

– Scattering 

– Energy loss 

– ... 

• Trajectory is only locally helical 

• Kalman Filter allows us to take 

these effects into account, while 

preserving a locally smooth 

trajectory 
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science 

fiction... 

..vs. real 

materials 



Kalman Filter 

• Method for obtaining best 

estimate of the five track 

parameters 

• Natural way of including 

interactions in the material 

(process noise) and hit position 

uncertainty (measurement error) 

• Used both in pattern recognition 

(i.e., determining which hits to 

group together as coming from 

one particle) and in fitting (i.e., 

determining the ultimate track 

parameters) 
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R. Frühwirth, Nucl. Instr. Meth. A 262, 444 (1987), DOI:10.1016/0168-9002(87)90887-4; http://www.mathworks.com/discovery/kalman-filter.html 

doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
http://www.mathworks.com/discovery/kalman-filter.html
http://www.mathworks.com/discovery/kalman-filter.html
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Tracking as Kalman Filter 
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• Track reconstruction has 3 main steps: seeding, building, and fitting 

• Building and fitting repeat the basic logic unit of the Kalman Filter... 

 

– From current track state 

(parameters and 

uncertainties), track is 

propagated to next layer 

– Using hit measurement 

information, track state is 

updated (filtered) 

– Procedure is repeated 

until last layer is reached 



Track Fitting as Kalman Filter 

• The track fit consists of the simple 

repetition of the basic logic unit for 

hits that are already determined to 

belong to the same track 

• Divided into two stages 

– Forward fit: best estimate at collision 

point 

– Backward smoothing: best estimate 

at face of calorimeter 

• Computationally, the Kalman Filter is 

a sequence of matrix operations with 

small matrices (dimension 6 or less) 

• But, many tracks can be fit in parallel 
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“Matriplex” Structure for Kalman Filter Operations 

• Each individual matrix is small: 3x3 or 6x6, and may be symmetric 

• Store in “matrix-major” order so 16 matrices work in sync (SIMD) 

• Potential for 60 vector units on MIC to work on 960 tracks at once! 
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M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N) Mn+1(1,1) Mn+1(1,2) … Mn+1(1,N) Mn+1(2,1) … , … Mn+1(N,N) M1+2n(1,1) 

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N) Mn+2(1,1) Mn+2 (1,2) … Mn+2 (1,N) Mn+2 (2,1) … , … Mn+2(N,N) 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N) M2n(0,0) M2n(0,1) … M2n(0,N) M2n(1,0) … M2n(N,N) M3n(0,0) 

Matrix size NxN, vector unit size n = 16 for MIC → data parallelism 
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Initialization of Matriplex from Track Data 

• This must vectorize to perform well! 

• It must also minimize cache misses 
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Matriplex 



Matriplex::CopyIn 

• Takes a single array as input and spreads it into fArray so that it 

occupies the n-th position in the Matriplex ordering (0 < n < N–1) 
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void CopyIn(idx_t n, T *arr) 

{ 

   for (idx_t i = n; i < kTotSize; i += N) 

   { 

      fArray[i] = *(arr++); 

   } 

} 
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Intel VTune Analysis of L1 Cache Misses 

Function / Call Stack CPU Time Clockticks 
Instructions 

Retired CPI Rate L1 Misses 
L1 Hit 

Ratio 

Estimated 

Latency 

Impact 

L2_DATA_READ 

_MISS_ 

MEM_FILL 

Matriplex::MatriplexSym<float, 

(int)3, (int)16>::CopyIn   [1] 0.888531 1.1E+09 9.5E+08 1.1579 27750000 0.864634 39.5002 500000 

Matriplex::MatriplexSym<float, 

(int)6, (int)16>::CopyIn   [2] 0.565429 7E+08 1E+08 7.00001 3750000 0.75 0 2000000 

MkFitter::InputTracksAndHits 0.161551 2E+08 1E+08 2 0 1 0 0 

Matriplex::Matriplex<float, 

(int)3, (int)1, (int)16>::CopyIn 0.379645 4.7E+08 3.5E+08 1.34286 0 1 0 1000000 

MultHelixProp 0.484653 6E+08 2E+08 3 0 1 0 0 

Matriplex::MatriplexSym<float, 

(int)6, (int)16>::Subtract 0.145396 1.8E+08 50000000 3.60001 0 1 0 0 
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[1] equivalent to MPlexLS; called from MkFitter::InputTracksAndHits; likely to be the initialization of Err 

[2] equivalent to MPlexHS; called from MkFitter::InputTracksAndHits; likely to be the initialization of msErr 

 

*All analysis is restricted to the final part of the run; only the fitting performance is relevant, so the simulation is skipped 
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A Faster, Two-Step Initialization of Matriplex 

• Step 1: straight copies from memory 

• Step 2: equivalent to matrix transpose 
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packed temp array, 

contiguous memory 

Matriplex 



Full Vectorization Is Crucial to Performance… 
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Comparison of input methods for fitting 1M tracks using Matriplex  
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2-step 
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Vectorization of CopyIn: Summary 

• Intel VTune’s metrics revealed that CopyIn, which distributes input 

data into a Matriplex, was underperforming 

– Assembler code showed lack of vectorization on Xeon Phi 

– Compiler was not converting strided for-loops into vectorized stores 

• Underlying operation is equivalent to a matrix transpose 

– Intel MKL didn’t work well; it’s best at doing large-matrix operations 

• Fastest Xeon Phi code uses Intel’s _mm512 vector intrinsics 

– To do a matrix transpose, either a load or a store must be strided 

– Intel provides intrinsics (low-level function calls) that can do this 

– Strided loads (vgather) work better than strided stores (vscatter) 

– Best: copy all data into a packed temp array, vgather into Matriplex 

• Big gain from recoding one routine for best SIMD performance 
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Good Utilization of MIC for Track Fitting! 

• Fitting is vectorized with Matriplex and parallelized using OpenMP 

• Same simulated physics results as production code, but faster 

– Effective performance of vectorization is about 50% utilization 

– Parallelization performance is close to ideal in case of 1 thread/core 
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Track Building 

• Building is harder than fitting 

• After propagating a track candidate 

to the next layer, hits are searched 

for within a compatibility window 

• Track candidate needs to branch in 

case of multiple matches  

– The algorithm needs to be robust 

against missing/outlier hits 

• Due to branching, track building is 

the most time consuming step in 

event reconstruction, by far  

– Design choices must aim to boost 

performance on the coprocessor 
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Strategy for Track Building 

• Keep the same goal of vectorizing and multithreading all operations 

– Vectorize by continuing to use Matriplex, just as in fitting 

– Multithread by binning tracks in eta (related to angle from axis) 

• Add two big complications 

– Hit selection: hit(s) on next layer must be selected from ~10k hits 

– Branching: track candidate must be cloned for >1 selected hit 

• Speed up hit selection by binning hits in both eta and phi (azimuth) 

– Faster lookup: compatible hits for a given track are found in a few bins 

• Limit branching by putting a cap on the number of candidate tracks 

– Sort the candidate tracks at the completion of each layer  

– Keep only the best candidates; discard excess above the cap 
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Eta Binning 

• Eta binning is natural for both track candidates and hits 

– Tracks don’t curve in eta 

• Form overlapping bins of hits, 2x wider than bins of track candidates 

– Track candidates never need to search beyond one extra-wide bin 

• Associate threads with distinct eta bins of track candidates 

– Assign 1 thread to j bins of track candidates, or vice versa (j can be 1) 

– Threads work entirely independently → task parallelism 
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Memory Access Problems 
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• Profiling showed the busiest functions were memory operations! 

• Cloning of candidates and loading of hits were major bottlenecks 

• This was alleviated by reducing sizes of Track by 20%, Hit by 40% 

– Track now references Hits by index, instead of carrying full copies 

 



Scaling Problems 

• Test parallelization by distributing threads across 21 eta bins 

– For nEtaBin/nThreads = j > 1, assign j eta bins to each thread 

– For nThreads/nEtaBin = j > 1, assign j threads to each eta bin 

• Observe poor scaling and saturation of speedup 
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Amdahl’s Law 

• Possible explanation: some fraction B of work is a serial bottleneck 

• If so, the minimum time for n threads is set by Amdahl’s Law 

 

T(n) = T(1) [(1−B)/n + B] 
parallelizable… not! 

 

• Note, asymptote as n →  is not zero, but T(1)B 

• Idea: plot the scaling data to see if it fits the above functional form 

– If it does, start looking for the source of B 

– Progressively exclude any code not in an OpenMP parallel section 

– Trivial-looking code may actually be a serial bottleneck… 
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Busted! 

• Huge improvement from excluding one code line creating eta bins 

EventOfCombCandidates event_of_comb_cands; 

// constructor triggers a new std::vector<EtaBinOfCandidates> 

• Accounts for 0.145s of serial code time (0.155s) 
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What’s Going On? 

• Did a fit to the timing results on Xeon: T(n) = T(1) * (0.74/n + 0.26) 

– Serial fraction B was unacceptably large! 

• Soon found that most of B came from re-instantiating a big data 

structure when starting up track-building for a new event 

– Fixed the issue by replacing deletion/creation with a simple reset 

• After the fix, Amdahl still fits: T(n) = T(1) * (0.91/n + 0.09) 

– Still have some remaining B, or maybe there’s another cause… 

• Can explain residual non-ideal scaling by non-uniformity of 

occupancy within threads, i.e., some threads take longer than others 

– Need to define strategies for an efficient “next in line” approach 

– Need to implement dynamic reallocation of thread resources 

• Work is ongoing! 
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Conclusions: Tracking R&D 

• Significant progress in creating 

parallelized and vectorized tracking 

software on Xeon/Xeon Phi 

– Among next steps: consider GPUs 

• Good understanding of bottlenecks 

and limitations 

– Recent versions of the code are 

faster and scale better 

– Future improvements are on the way 

• Have begun to process realistic data, 

preliminary results are encouraging 

• Still need to incorporate realistic 

geometry and materials 
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The project is solid and promising 

but we still have a long way to go 



Conclusions: HPC in the Manycore Era 

• HPC has moved beyond giant clusters that rely on coarse-grained 

parallelism and MPI (Message Passing Interface) communication 

– Coarse-grained: big tasks are parceled out to a cluster 

– MPI: tasks pass messages to each other over a local network 

• HPC now also involves manycore engines that rely on fine-grained 

parallelism and SIMD within shared memory 

– Fine-grained: threads run numerous subtasks on low-power cores 

– SIMD: subtasks act upon multiple sets of operands simultaneously 

• Manycore is quickly becoming the norm in laptops and other devices 

• Programmers who want their code to run fast must consider how 

each big task breaks down into smaller parallel chunks 

– Multithreading must be enabled explicitly through OpenMP or an API 

– Compilers can vectorize loops automatically, if data are arranged well 

11/17/2015 www.cac.cornell.edu 41 


