 UN/
5
=

3)) Cornell University

Center for Advanced Computing

High Performance Computing in the
Manycore Era: Challenges for Applications

Steve Lantz
Senior Research Associate

Cornell University Center for Advanced Computing (CAC)
slantz@cac.cornell.edu

CACM Seminar at RIT, Nov. 17, 2015

www.cac.cornell.edu

mailto:your@cac.cornell.edu

Cornell University
Center for Advanced Computing

11/17/2015 www.cac.cornell.edu 2

Cornell University
Center for Advanced Computing

CPU Speed and Complexity Trends

10,000,000 -
] < Num Transistors (in Thousands)
1,000,000 + ® Relative Performance = <& 8 o
] A Clock Speed (MHz) o 5
' Tvo (W) o O | TS
100,000 o | =PowerTwn(o K & o
: O NumCores/Chip o
] ‘....
10,000 1 _gorapvtwe—
1 ONEA DO
1,000 - k2
: - =
100 ~atrym AL —in
] m "=
10 4 c O =
-) 7 o
1 3 ASICLO0 ©
0 T T T T
1985 1990 1995 2000 2005 2010

Year of Introduction
Committee on Sustaining Growth in Computing Performance, National Research Council.
"What Is Computer Performance?"
In The Future of Computing Performance: Game Over or Next Level?
Washington, DC: The National Academies Press, 2011.

11/17/2015 www.cac.cornell.edu 3

Cornell University
Center for Advanced Computing

How TACC Stampede Reached ~10 Petaflop/s

« 2+ petaflop/s of Intel Xeon E5

e 7+ additional petaflop/s of Intel
Xeon Phi™ SE10P coprocessors

* Follows the hardware trend of the
last 10 years: processors gain
cores (execution engines) rather
than clock speed

* Sois Moore’s Law dead? No!

— Transistor densities are still doubling every 2 years
— Clock rates have stalled at < 4 GHz due to power consumption
— Only way to increase flop/s/watt is through greater on-die parallelism

Architectures must move from multi-core to

Photo by TACC, June 2012

11/17/2015 www.cac.cornell.edu 4

Cornell University
Center for Advanced Computing

Manycore Elements in Petaflop/s Machines

« CPUs: Wider vector units, more cores
— General-purpose platform
— Single-thread performance emphasis ,
— Example, dual E5-2680 on Stampede: 0.34 Tflop/s 260W

« GPUs: Thousands of very simple stream processors
— Special multithreading APIs: CUDA, OpenCL, OpenACC
— High floating-point throughput
— Example, Tesla K20 on Stampede: 1.17 Tflop/s, 225W

« MICs: Dozens of CPU cores optimized for floating-point efficiency
— General-purpose codes will run (like CPU)
— High floating-point throughput for multithreaded code (like GPU)
— Example, Xeon Phi SE10P on Stampede: 1.06 Tflops/s, 300W

Xeon €5-2600 Xeon €5-2600
.

11/17/2015 www.cac.cornell.edu 5

Cornell University
Center for Advanced Computing

 Complete system on PCle card (Linux OS, processor, memory)
« Xx86-derived processor featuring large number of simplified cores
— Many Integrated Core (MIC) architecture
« Optimized for floating point throughput
— Lots of floating-point operations per second (flop/s) for HPC
« Modified 64-bit x86 instruction set
— Code compatible (C, C++, Fortran) after re-compile
— Not binary compatible with x86_64
Intel’'s answer to general purpose GPU (GPGPU) computing
— Similar flop/s/watt to GPU-based products like NVIDIA Tesla

11/17/2015 www.cac.cornell.edu 6

Cornell University
Center for Advanced Computing

Power-Saving Choices in the Xeon Phi Design

* Reduce clock speed

« Omit power-hungry features
such as branch prediction,
out-of-order execution

« Simplify instruction decoder,
but maintain high instruction
rate via 2—4 threads per core

 Eliminate a shared L3 cache
In favor of coherent L2 caches

« And add... lots of cores!

 These factors tend to degrade
single-thread performance, so
multithreading is essential

11/17/2015 www.cac.cornell.edu 7

Cornell University
Center for Advanced Computing

MIC vs. CPU
MIC (SE10P) CPU (E5) MIC is...
Number of cores 61 8 much higher
Clock speed (GHz) 1.01 2.7 lower
SIMD width (bits) 512 256 higher
DP Gflop/s/core 16+ 21+ lower
HW threads/core 4 1* higher

« CPUs designed for all workloads, high single-thread performance

« MIC also general purpose, though optimized for number crunching
— Focus on high aggregate throughput via lots of weaker threads
— Possible to achieve >2x performance compared to dual E5 CPUs

11/17/2015 www.cac.cornell.edu 8

Cornell University
Center for Advanced Computing

Two Types of MIC (and CPU) Parallelism

» Threading (task parallelism)
— OpenMP, Cilk Plus, TBB, Pthreads, etc.
— It's all about sharing work and scheduling
- Vectorization (data parallelism)
— “Lock step” Instruction Level Parallelization (SIMD)
— Requires management of synchronized instruction execution
— It's all about finding simultaneous operations

« To fully utilize MIC, both types of parallelism need to be identified
and exploited

— Need 2-4+ threads to keep a MIC core busy (in-order execution stalls)
— Vectorized loops gain 8x or 16x performance on MIC!
— Important for CPUs as well: gain of 4x or 8x on Sandy Bridge

11/17/2015 www.cac.cornell.edu 9

Cornell University

Center for Advanced Computing

‘ —

- Scalar & single-thread ..,

More
parallel

Vector & single-thread [

Scalar & multithreaded [*=———————————

_ Vector & multithreaded [#5=5=

1 10 100 1000 10,000

performance

11/17/2015 www.cac.cornell.edu 10

Courtesy James Reinders, Intel

Cornell University
Center for Advanced Computing

Typical Configuration of a Stampede Node

« Host with dual Intel Xeon PCle card with Intel
“Sandy Bridge” (CPU) Access from network: Xeon Phi™ (MIC)
ssh <host> (0OS)
ssh <coprocessor>
(nOS)
Linux OS Linux
I_ HCA | micro OS
PCle
| Virtual IP*

service for MIC

11/17/2015 www.cac.cornell.edu 11

Cornell University
Center for Advanced Computing

Offload Execution Model

Offlcad g

 OpenMP-like directives
indicate which data and
functions to send from CPU
to MIC for execution

« Unified source code
« Code modifications required
« Compile once

* Runin parallel using MPI
(Message Passing Interface)
and/or scripting, if desired

............

sssegryrr

Courtesy Scott McMillan, Intel

11/17/2015 www.cac.cornell.edu 12

Cornell University
Center for Advanced Computing

“Symmetric” Execution Model

 Message passing (MPI) on
CPUs and MICs alike

 Unified source code MPI

 Code modifications advisable

— Multithread with OpenMP or
Threaded Building Blocks

— Assign different work to
CPUs vs. MICs

« Compile twice, 2 executables
— One native to host
— One native to MIC

Run in parallel using MPI

Courtesy Scott McMillan, Intel

11/17/2015 www.cac.cornell.edu 13

Cornell University
Center for Advanced Computing

Collaborators
K.McDermott,
D.Riley,
P.Wittich
(Cornell);
G.Cerati,
M.Tadel,
F.Wurthwein,
A.Yagil
(UCSD);
P.Elmer
(Princeton)

Photo
CMS detector,
LHC, CERN

11/17/2015 www.cac.cornell.edu

V7
~ ‘ s o /

. . ‘u. i e B Y //-"i
Cornell University ""\‘ 3 * . SEPES
< g *‘ ‘

Center for Advanced Computing e - ___

S,
LHC: It’s a Collider!... | = it~

v@, :mr?‘

\

The Large Hadron Collider
smashes beams of protons
Into each other, as they go
repeatedly around a ring
17 miles in circumference
_,g » at nearly the speed of light

11/17/2015 www.cac.cornell.edu 15

Cornell University
Center for Advanced Computing

11/17/2015 www.cac.cornell.edu

Cornell University
Center for Advanced Computing

0m im
Key:
Muan
Electron

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Tracker

\ Electromagnetic
}l]l Calorimeter

Hadran Superconducting
Calorimeter Sclencid

Iron return yoke intersparsed
Transverse slice with Muon chambers
through CM3

D Berrnay, CERN, Febricnry 2004

Particles interact differently, so CMS is a detector with different layers to
identify the decay remnants of Higgs bosons and other unstable particles

11/17/2015 www.cac.cornell.edu 17

Cornell University
Center for Advanced Computing

B | g Data Ch al I en g e proton - (anti)proton cross sections

10° ¢ ———rrr ——————— 10

40 million collisions a second wh Tevatron tHC, 4
 Most are boring 10° g | e 00

— Dropped within 3 us " t :ﬁg
10* | 5 10°
- Higgs events: super rare wh Jog
— 10%° collisions — 10° Higgs — _«'} ° L i Jo T
1L A gl Q
— Maybe 1% of these are found f“’ "5
g
2
o
®

W T

107 | 4 10?

10° | 4 10°

: “ . ” 10" 3 1 10*

« Ultimate “needle in a haystack > e Lty { : il F e
-+ “Big Data” since before it was 0 b | qwe
cool W ey

E (TeV)
http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html
11/17/2015 www.cac.cornell.edu 18

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

Cornell University
Center for Advanced Computing

For Interesting Events: Tracking

« Goal is to reconstruct the trajectory (track) of each charged particle
« Solenoidal B field bends the trajectory in one plane (“transverse”)

« Trajectory is a helix described by 5 parameters, p-, 1, @, Z,, d,

* We are most interested in high-momentum (high-p;) tracks

« Trajectory may change due to interaction with materials

« Ultimately we care mainly about:
— Initial track parameters
— Exit position to the calorimeters

« We use a Kalman Filter-based technique

o Beampipe

11/17/2015 www.cac.cornell.edu 19

Cornell University

Center for Advanced Computing

Naively, the particle’s trajectory
Is described by a single helix

science « Forget it

fiction... — Non-uniform B field
— Scattering
— Energy loss

« Trajectory is only locally helical

« Kalman Filter allows us to take
these effects into account, while
preserving a locally smooth
trajectory

..VS. real
materials

11/17/2015 : www.cac.cornell.edu 20

Cornell University
Center for Advanced Computing

Kalman Filter Aircraft

« Method for obtaining best \R&
estimate of the five track 2?

Noisy Estimated
param eters Measurements | Kalman Position
. : S e Y| Filter 4
« Natural way of including
Interactions in the material
(process noise) and hit position Kalman filter
u n Ce rtal nty (measu re me nt e rro r) From Wikipedia, the free encyclopedia
* Used both in pattern recognition o et earements ssoom v
(l e y d@termlnlng Wthh hltS tO time, containing noise (random variations) and other inaccuracies,

. and produces estimates of unknown variables that tend to be more
grou p together aS Coml ng from precise than those based on a single measurement alone. More
one par'“Cle) and N f|tt| ng (| e. . formally, the Kalman filter operates recursively on streams of noisy

.. . input data to produce a statistically optimal estimate of the underlyin
determlnlng the UItImate traCk sypstem state.pThe filter is named :fteF: Rudolf (Rudy) E. Kalméan, ::neg
param ete rS) of the primary developers of its theory.

R. Frihwirth, Nucl. Instr. Meth. A 262, 444 (1987), DOI:10.1016/0168-9002(87)90887-4; http://www.mathworks.com/discovery/kalman-filter.html

11/17/2015 www.cac.cornell.edu 21

doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
http://www.mathworks.com/discovery/kalman-filter.html
http://www.mathworks.com/discovery/kalman-filter.html
http://www.mathworks.com/discovery/kalman-filter.html

Cornell University

Center for Advanced Computing

Tracking as Kalman Filter

« Track reconstruction has 3 main steps: seeding, building, and fitting
« Building and fitting repeat the basic logic unit of the Kalman Filter...

updated state
after N

o8& —.

Nth measurement ——— IMN

=Fn-1-XN"In-1

£

propagationto N ————

updated state N-1
after N-1 X" N-1

S

11/17/2015 www.cac.cornell.edu

——— XNy=xN-1y+Kn*(mn-Hn:xN-1N)

— From current track state
(parameters and
uncertainties), track is
propagated to next layer

— Using hit measurement
information, track state is
updated (filtered)

— Procedure is repeated
until last layer is reached

22

Cornell University
Center for Advanced Computing

Track Fitting as Kalman Filter

* The track fit consists of the simple
repetition of the basic logic unit for G @

hits that are already determined to
belong to the same track

. Divided into two stages @ @
— Forward fit: best estimate at collision
point .
— Backward smoothing: best estimate
at face of calorimeter
« Computationally, the Kalman Filter is O
a sequence of matrix operations with @ @
small matrices (dimension 6 or less)

* But, many tracks can be fit in parallel

11/17/2015 www.cac.cornell.edu 23

Cornell University
Center for Advanced Computing

“Matriplex” Structure for Kalman Filter Operations

Each individual matrix is small: 3x3 or 6x6, and may be symmetric
Store in “matrix-major” order so 16 matrices work in sync (SIMD)
Potential for 60 vector units on MIC to work on 960 tracks at once!

RI -l M1 | M'(1,2) MAN | My | MmNy e | M n2) M N) [Mty | M NNy | M
<
R2 - -% M1, | M(1,2) M(ILN) | M2 | | MAINNY
%
&z
o
(S
v
@& |;
b
=
Rn -I ML) | MeaL2) M(ILN) | M@ M(N,N) M31(0,0)
vector
unit Matrix size NxN, vector unit size n = 16 for MIC — data parallelism

11/17/2015 www.cac.cornell.edu 24

Cornell University
Center for Advanced Computing

Initialization of Matriplex from Track Data

MI(1,1)
« This must vectorize to perform well!
. . . M'(1,2) M'(1,1)
* |t must also minimize cache misses o
MI(1,2)
e
l ML | M'(1,2) MI(LN) | M@ | .., | MI(NN) RI MILN)
: T~
= ML) | M(1,2) M2(I,N) | M2(2,1) s | MANLN) R2 ML) MI(ILN)
v
= M'(1,N)
g. < : < : M'(2,1)
g M'(2,1)
=
.E / :
I ML | Mr1,2) M(LN) | M@, 1) Mn(N,N) Rn \ MIONN)
Matriplex VeCt_or MI(N,N)
unit MIN)

separate input tracks
11/17/2015 www.cac.cornell.edu 25

Cornell University
Center for Advanced Computing

Matriplex::Copyln

« Takes a single array as input and spreads it into fArray so that it
occupies the n-th position in the Matriplex ordering (0 <n < N-1)

void CopyIn(idx_t n, T *arr)
{
for (idx_t 1 = n; i < kTotSize; i += N)
{
fArray[i] = *(arr++);
}
}

11/17/2015 www.cac.cornell.edu 26

Cornell University
Center for Advanced Computing

Intel VTune Analysis of L1 Cache Misses

Estimated|L2_DATA_READ
Instructions L1 Hitl| Latency _MISS
Function / Call Stack CPU Time| Clockticks Retired| CPIl Ratel L1 Misses Ratio Impact MEM FILL

Matriplex::MatriplexSym<float,

(int)3, (int)16>::Copyin [1] 0.888531 1.1E+09 9.5E+08 1.1579 27750000 0.864634 39.5002 500000
Matriplex::MatriplexSym<float,

(int)6, (int)16>::Copyin [2] 0.565429 7E+08 1E+08 7.00001 3750000 0.75 0 2000000
MkFitter::InputTracksAndHits 0.161551 2E+08 1E+08 2 0 1 0 0
Matriplex::Matriplex<float,

(int)3, (int)1, (int)16>::Copyln 0.379645 4.7E+08 3.5E+08 1.34286 0 1 0 1000000
MultHelixProp 0.484653 6E+08 2E+08 3 0 1 0 0

Matriplex::MatriplexSym<float,
(int)6, (int)16>::Subtract 0.145396 1.8E+08 50000000 3.60001 0 1 0 0

[1] equivalent to MPlexLS; called from MkFitter::InputTracksAndHits; likely to be the initialization of Err
[2] equivalent to MPlexHS; called from MkFitter::InputTracksAndHits; likely to be the initialization of msErr

*All analysis is restricted to the final part of the run; only the fitting performance is relevant, so the simulation is skipped

11/17/2015 www.cac.cornell.edu 27

Cornell University
Center for Advanced Computing

A Faster, Two-Step Initialization of Matriplex

« Step 1: straight copies from memory

« Step 2: equivalent to matrix transpose MDD e D
/ MI(1,2) | M!(1,2) M'(1,2)
l ML) | M(1,2) MNY | M@y | | MI(INN) RI
E T~
5 ML) | M2(12) M(I,N) | M) | ., | MANN) R2
(O]
© MI(LN) | MIN) M!(1,N)
gl «— <« «—
é M'@2,1) | M'@2I) M!(2,1)
2
T —
I ML | Me1,2) M(LN) | M@, 1) M"(N,N) Rn \
Matriplex vector
unit M'(N,N) | M(N,N) M'(N,N)

packed temp array,

contiguous memory
11/17/2015 www.cac.cornell.edu 28

Cornell University
Center for Advanced Computing

Full Vectorization Is Crucial to Performance...

Comparison of input methods for fitting 1M tracks using Matriplex

MKL
7
2-step +
; original BEST: vscatter original +
2-step 2-step + vscatter
. vgather
4
M input
3 m fit
2
1
0 T T T T T)
3 4 5

Data input method #

Singlle-threaded time, sec.

11/17/2015 www.cac.cornell.edu 29

Cornell University
Center for Advanced Computing

Vectorization of Copylin: Summary

Intel VTune’s metrics revealed that Copyln, which distributes input
data into a Matriplex, was underperforming

— Assembler code showed lack of vectorization on Xeon Phi

— Compiler was not converting strided for-loops into vectorized stores
Underlying operation is equivalent to a matrix transpose

— Intel MKL didn’t work well; it's best at doing large-matrix operations
Fastest Xeon Phi code uses Intel's _mm512 vector intrinsics

— To do a matrix transpose, either a load or a store must be strided

— Intel provides intrinsics (low-level function calls) that can do this

— Strided loads (vgather) work better than strided stores (vscatter)

— Best: copy all data into a packed temp array, vgather into Matriplex

* Big gain from recoding one routine for best SIMD performance

11/17/2015 www.cac.cornell.edu 30

Cornell University
Center for Advanced Computing

Good Utilization of MIC for Track Fitting!

MIC - vectorized, single threaded MIC - parallelized, vector size = 16
__45¢ _10
0 o w0
> a0 +— MIC Measured p —e— MIC 1 thread/core
-E - E —&— MIC 2 threads/core
= 35 N i = = .
= MIC Ideal Scaling s MIC Ideal Scaling
-E‘cif 30 é 1
£ _F 5 F
s 250 s
20f- .
15F 107
10 -
5 i
0 : Ll L l LA 1 I J 1 I L l I J - | L Ll 10-2 il L L l ' 1 1 | L L 1 | L L L I L L L l ' L 1 l
0 2 4 6 8 10 12 14 18 18 0 20 40 60 80 100 120
Vector Size Number of threads

« Fitting Is vectorized with Matriplex and parallelized using OpenMP

« Same simulated physics results as production code, but faster
— Effective performance of vectorization is about 50% utilization
— Parallelization performance is close to ideal in case of 1 thread/core

11/17/2015 www.cac.cornell.edu 31

Cornell University
Center for Advanced Computing

Track Building

* Building is harder than fitting

« After propagating a track candidate
to the next layer, hits are searched
for within a compatibility window

* Track candidate needs to branch in
case of multiple matches
— The algorithm needs to be robust
against missing/outlier hits
« Due to branching, track building is
the most time consuming step in
event reconstruction, by far

— Design choices must aim to boost

performance on the coprocessor seed

11/17/2015 www.cac.cornell.edu

Q=

O=>0=>0

2>0D>0=>0=> | D> @

>0 @D

FP>9>9=>0>@

32

Cornell University
Center for Advanced Computing

Strategy for Track Building

« Keep the same goal of vectorizing and multithreading all operations
— Vectorize by continuing to use Matriplex, just as in fitting
— Multithread by binning tracks in eta (related to angle from axis)
« Add two big complications
— Hit selection: hit(s) on next layer must be selected from ~10k hits
— Branching: track candidate must be cloned for >1 selected hit
« Speed up hit selection by binning hits in both eta and phi (azimuth)
— Faster lookup: compatible hits for a given track are found in a few bins
« Limit branching by putting a cap on the number of candidate tracks
— Sort the candidate tracks at the completion of each layer
— Keep only the best candidates; discard excess above the cap

11/17/2015 www.cac.cornell.edu 33

Cornell University
Center for Advanced Computing

Eta Binning

© bin bin0 : binl: bin2 : bin3 : bin4 : bin5: bin6: ... : .. binN-I binN

: tracks_:

hits |

minEta : . : : : : : : . . maxEta

« Eta binning is natural for both track candidates and hits
— Tracks don’t curve in eta

« Form overlapping bins of hits, 2x wider than bins of track candidates
— Track candidates never need to search beyond one extra-wide bin

« Associate threads with distinct eta bins of track candidates
— Assign 1 thread to j bins of track candidates, or vice versa (j can be 1)
— Threads work entirely independently — task parallelism

11/17/2015 www.cac.cornell.edu 34

Cornell University
Center for Advanced Computing

% Advanced Hotspots Hotspots viewpoint (change)

Grouping: | Function / Call Stack s] [@) =]

CPU Time *@
Function / Call Stack Effective Time by Utizatione BsBo® IFS;'.;T:;%M E(S;ngtjr?t Tmalc'c[:;:-axt‘or‘
@ de @ Poor DOk @ !deal @ Over n n

b std vector<int, std: -allocator<int>> vector 40 772« I 114,991.736,536 728.825,808 0
b_int_free 39.751s I 136,359,038,066 0 1,125,954,207
P operator new 32 712« 86,154,002,942 0 0
b atan2f L C——) 96,263,571,713 0 0
P brk 14193 D 2,656,096,078 0 0
P Matriplex: :MatnplexSym<float, (int)3, (int)8>:-Slurpin 13.738s D 27,254,784,743 0 0
b std- vector<Hit, std- allocator<Hit>>: vector 13 491« D 48.368,155.014 1,447.206.650 6,041,737
P Matriplex: - CramerinverterSyme<fioat, (int)3, (int)8> :Invert 8327 D 15,279,940,773 0 0
bsed unguarded_linear_insert<__gnu_cxx::__normal_tterator<Track*, std vector<Track, std: allocator<T 6 8s1s D 40,713.325,132 59,662,888 888.022.699
P ROOT: :Math: MatRepSym<float, (unsigned int}6> :operator= 6.092s 12,600,131,879 0 467,391,832
P _intel_ssse3_rep_memmove 5 754s D 14,338,306.198 0 0
b std: vector<std: -vector<Track, std: -allocator<Track>>, std: allocator<std: vector<Track, std: allocator<T 49275l 8,850,791,643 17,446 13,912,039
b std- vector<EtaBinOfCombCandidate allocator<EtaBinOfCombCandidates>> ~vector 4832 D 5514.436.399 0 34.567.836
P MkFitter - FindCandidates as508s [l 11,976,985,333 7.887.339 187,147.759
P std- vector<Track, std -allocator<Track>> reserve 4334: 7.961.238,732 14,178,785 0
bfree 30188 12,843,035.454 0 0
P std- vector<int, std:allocator<int>>:: M_emplace_back_aux<int const&> 3012s18 24,161.489523 394,041,601 0
P Matriplex: :MatnplexSym<float, (int)6, (int)8>: operator= 2818518 9,673.130.099 0 1.350,384.733
P Track: Track 2 786'.. 7.584,629.305 93,542,787 463911.688
b _10_file_write 25925 435,958,384) 0
P propagateHelx ToRMPlex 22038 3.122.056,392 0 0
Pstd:__insertion_sort<__gnu_cxx:.__normal_iterator<Track®, std: .vector<Track, std: ‘allocator<Tack>>>.| 2.164s 7.990,728.691 5.356.129 62,442,951

* Profiling showed the busiest functions were memory operations!
» Cloning of candidates and loading of hits were major bottlenecks

« This was alleviated by reducing sizes of Track by 20%, Hit by 40%
— Track now references Hits by index, instead of carrying full copies

11/17/2015 www.cac.cornell.edu 35

Cornell University
Center for Advanced Computing

Scaling Problems

Xeon - parallelized, vector size = 8 Xeon Phi - parallelized, vector size = 16 (int.)
7 30 w
2 - —+— Measured ?40? —e— Measured
= 25— = -
.‘—; - — Ideal Scaling %120; —— ldeal Scaling
5 20— ©100(-
o e
8 E 80:-
< 15 = 0
o - [=] H
X T X 601
210 S
] 40
r -
St 20
C - 5 . .
C P I T ST NS SO N N AN SR SR S T A S S S P I e o e e S J | | TP SR B
0 5 10 15 20 25 0 20 40 60 80 100 120 140 160 180 200 220 240
Number of threads Number of threads

Test parallelization by distributing threads across 21 eta bins
— For nEtaBin/nThreads = > 1, assign | eta bins to each thread
— For nThreads/nEtaBin = j > 1, assign j threads to each eta bin

Observe poor scaling and saturation of speedup

11/17/2015 www.cac.cornell.edu 36

Cornell University
Center for Advanced Computing

Amdahl’s Law

« Possible explanation: some fraction B of work is a serial bottleneck
* If so, the minimum time for n threads is set by Amdahl’s Law

T(n) =T(1) [(1-B)/n + B]

parallelizable... not!

* Note, asymptote as n — « is not zero, but T(1)B

» |dea: plot the scaling data to see if it fits the above functional form
— If it does, start looking for the source of B
— Progressively exclude any code not in an OpenMP parallel section
— Trivial-looking code may actually be a serial bottleneck...

11/17/2015 www.cac.cornell.edu 37

Cornell University
Center for Advanced Computing

Busted!

Xeon - parallelized, vector size = 8

Xeon - parallelized, vector size =8

o

o]
o
o

=p==mt-2, NO Vtune 16, avg of 9
==mt-2, eta bin excl., avg of 9
Ideal

-0.145s

%
>
)

X

:

\
\

o
=)}
I
|
"

o
n
=~
—

20k tracks avg build time [s]
o
~
;:
20k tracks avg build time [s]
o
=y

o o

[Nl w
4
<

o

[N]

ot
wn

| hyperthreading
effect

=p=mt-2, NO Vtune 16, avg of 9

epesAmdahl, s = 0.26, Ts = 0.215s

={l=mt-2, eta bin excl., avg of 9

=sé=Amdahl, s = 0.09, Ts = 0.06s
Ideal

o

=
o
h

o h
o

T T T 1 T T T T T 1
10 15 20 25 0 0.2 0.4 0.6 0.8 1 1.2
1/Nthreads

o
o

Nthreads

Huge improvement from excluding one code line creating eta bins

EventOfCombCandidates event of comb_cands;
// constructor triggers a new std::vector<EtaBinOfCandidates>
» Accounts for 0.145s of serial code time (0.155s)

11/17/2015 www.cac.cornell.edu 38

Cornell University
Center for Advanced Computing

What’s Going On?

« Did a fit to the timing results on Xeon: T(n) = T(1) * (0.74/n + 0.26)
— Serial fraction B was unacceptably large!

« Soon found that most of B came from re-instantiating a big data
structure when starting up track-building for a new event

— Fixed the issue by replacing deletion/creation with a simple reset
« After the fix, Amdahl still fits: T(n) = T(1) * (0.91/n + 0.09)
— Still have some remaining B, or maybe there’s another cause...

« Can explain residual non-ideal scaling by non-uniformity of
occupancy within threads, i.e., some threads take longer than others
— Need to define strategies for an efficient “next in line” approach
— Need to implement dynamic reallocation of thread resources

Work is ongoing!

11/17/2015 www.cac.cornell.edu 39

Cornell University
Center for Advanced Computing

Conclusions: Tracking R&D

« Significant progress in creating ‘

parallelized and vectorized
software on Xeon/Xeon Phi

tracking

— Among next steps: consider GPUs
« Good understanding of bottlenecks

and limitations

— Recent versions of the code are

faster and scale better

— Future improvements are on the way

- Have begun to process rea

listic data,

preliminary results are encouraging

« Still need to incorporate realistic

geometry and materials

11/17/2015

www.cac.cornell.edu

h_radlL_axy

20

100=__

80

60

20

|
I
{
_IPTI

S Sy

I-,‘I'_._.I:_ Ijl!- '1 T Irl :! i|| I'i I‘ T

.[u

40—

| |4\I,“II |_II:I:_I

(=]
o
|— S
D / y
| ryy F:
AT . /
o
o

The project is solid and promising
but we still have a long way to go

40

Cornell University
Center for Advanced Computing

Conclusions: HPC in the Manycore Era

« HPC has moved beyond giant clusters that rely on coarse-grained
parallelism and MPI (Message Passing Interface) communication

— Coarse-grained: big tasks are parceled out to a cluster
— MPI: tasks pass messages to each other over a local network
« HPC now also involves manycore engines that rely on fine-grained
parallelism and SIMD within shared memory
— Fine-grained: threads run numerous subtasks on low-power cores
— SIMD: subtasks act upon multiple sets of operands simultaneously
« Manycore is quickly becoming the norm in laptops and other devices
* Programmers who want their code to run fast must consider how
each big task breaks down into smaller parallel chunks
— Multithreading must be enabled explicitly through OpenMP or an API
— Compilers can vectorize loops automatically, if data are arranged well

11/17/2015 www.cac.cornell.edu 41

