
Steve Lantz
Senior Research Associate

Cornell CAC

Workshop: Introduction to Parallel Computing on Ranger, May 19, 2010
Based on materials developed by by Bill Barth at TACC

Programming with MPI:
Advanced Topics

2

Goals

• To gain an awareness of specialized features in MPI that you may
want to use right away in writing parallel applications

• To create a little mental catalog of MPI’s more advanced capabilities
for future reference

At the end of each section, let’s ask:
• Why was this set of routines included? What might they be good for?
• Can we think of an example where they would be useful?

3

Introduction and Outline

1. Advanced point-to-point communication
2. Collective communication with non-contiguous data
3. Derived datatypes
4. Communicators and groups
5. Persistent communication
6. Parallel I/O (MPI-2)
7. Status of MPI-2

4

1. Advanced Point-to-Point
Communication

5

Standard Send, Receive

Standard-Mode Blocking Calls:
MPI_Send, MPI_Recv

• MPI_Send returns only when
the buffer is safe to reuse:
– the small message has

been copied elsewhere, or
– the large message has

actually been transferred;
– the small/large threshold is

implementation dependent
• Rule of thumb: a send only

completes if a matching
receive is posted/executed

6

Synchronous and Buffered Modes

Synchronous Mode: MPI_Ssend
• Transfer is not initiated until

matching receive is posted
• Non-local: handshake needed
• Returns after message is sent
Buffered Mode: MPI_Bsend
• Completes as soon as the

message is copied into the
user-provided buffer

• Buffer must be provided using
MPI_Buffer_attach

• One buffer per process

7

Ready Mode and Deadlock

Ready Mode: MPI_Rsend
• Initiates transfer immediately
• Assumes that a matching

receive has already been
posted

• Error if receiver isn’t ready
Deadlock
• All tasks are waiting for events

that yet haven’t been initiated
• Can be avoided by reordering

calls, by using non-blocking
calls, or with MPI_Sendrecv

8

• Synchronous mode is portable and “safe”
– does not depend on order (ready mode) or buffer space (buffered mode)
– incurs substantial overhead

• Ready mode has least total overhead, but how can error be avoided?
– sometimes the logic of the code implies the receiver must be ready

• Buffered mode decouples sender and receiver
– sender doesn’t have to sync; receiver doesn’t have to be ready
– time and memory overheads are incurred by copying to the buffer
– sender can control size of message buffers and total amount of space

• Standard mode tries to strike a balance
– small messages are buffered on receiver’s side (avoiding sync overhead)
– large messages are sent synchronously (avoiding big buffer space)

Discussion of Send Modes

9

• MPI_Sendrecv (blocking)
– send message A from one buffer; receive message B in another buffer
– destination of A, source of B can be same or different

• MPI_Sendrecv_replace (blocking)
– send message A from one buffer; receive message B in SAME buffer
– again, destination of A, source of B can be same or different
– system takes care of the extra internal buffering

• Illustration 1: data swap between processors
– destination and source are identical

• Illustration 2: chain of processors
– send result to myrank+1, receive next input from myrank-1

MPI_Sendrecv and MPI_Sendrecv_replace

10

Non-Blocking Calls

• Calls return immediately
• System handles buffering
• Not “safe” to access message

contents until action is known
to be completed

• With MPI_Isend, message
buffer is reusable right away
if tag or receiver is different;
otherwise, check status

• With MPI_Irecv, user must
always check for data; only
small messages are buffered useful work

may be done

11

for (i=0;i<M;i++) MPI_Irecv(<declare receive buffers>);
for (i=0;i<N;i++) MPI_Isend(<mark data for sending>);

/* Do local operations */
MPI_Waitall(<make sure all receives finish>)

/* Operate on received data */
MPI_Waitall(<clear request handles for all sends>)

Use of Non-Blocking Communication

• Non-blocking calls permit overlap of computation and communication
• All send modes are available: MPI_Irsend, MPI_Ibsend, MPI_Issend
• Non-blocking calls must normally be resolved through a second call

– main options: MPI_Wait, MPI_Test, MPI_Cancel, MPI_Request_free
– variants like MPI_Waitany help to resolve calls in arbitrary order
– reason for doing this: avoid running out of request handles

• Outline for typical code:

12

• MPI_Wait halts progress until a specific non-blocking request (send
or receive) is satisfied; the related message buffer is then safe to use
– MPI_Waitall does the same thing for a whole array of requests
– MPI_Waitany waits for any one request from an array
– MPI_Waitsome waits for one or more requests from an array

• MPI_Test immediately returns the status (no waiting!) of a specific
non-blocking operation, again identified by a request handle
– returns flag = true only if the operation is complete
– allows alternative instructions to be carried out if operation isn’t complete
– has the same variants: MPI_Testall, MPI_Testany, MPI_Testsome

MPI_Testany(int count, MPI_Request *array_of_reqs,
int *index, int *flag, MPI_Status *status);

MPI_Wait and MPI_Test

13

• MPI_ANY_SOURCE, MPI_ANY_TAG are “wildcards” that may be
used by receives (blocking and non-blocking) in situations where the
source or tag of a message does not need to be known in advance
– the status argument returns source, tag, and error status
– a separate call to MPI_Get_count determines the size of the message
– but… what if you need to know a message’s size before receiving it?

• MPI_Iprobe returns the properties of any message that has arrived
without receiving it into a buffer (maybe you need to do a big malloc!)

• MPI_Probe blocks until such a message arrives (no flag)

Other Ways to Gain Flexibility in Communication

MPI_Iprobe(int source, int tag, MPI_Comm comm,
int *flag, MPI_Status *status);

14

2. Collective Communication
with Non-Contiguous Data

15

Root

task or
process

array or
variable

broadcast

scatter

gather

allgather

p0 A

p1 A

p2 A

p3 A

p0 A

p1 B

p2 C

p3 D

p0 A B C D

p1

p2

p3

p0 A B C D

p1 A B C D

p2 A B C D

p3 A B C D

p0 A

p1

p2

p3

p0 A B C D

p1

p2

p3

p0 A

p1 B

p2 C

p3 D

p0 A

p1 B

p2 C

p3 D

Review: Scatter and Gather

16

Introducing Scatterv, Gatherv

• MPI_{Scatter,Gather,Allgather}v
• What does v stand for?

– varying size and relative location of messages
• Advantages

– more flexibility
– less need to copy data into temporary buffers
– more compact

• Disadvantage
– harder to program

17

Scatter vs. Scatterv

CALL mpi_scatterv (SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE,
RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERR)

• SENDCOUNTS(J) is the number of items of type SENDTYPE to send from
process ROOT to process J. Defined on ROOT.

• DISPLS(J) is the displacement from SENDBUF to the beginning of the J-th
message, in units of SENDTYPE. Defined on ROOT.

18

MPI_Comm_size(comm,&ntids);
sizes = (int*)malloc(ntids*sizeof(int));
MPI_Allgather(&n,1,MPI_INT,sizes,1,MPI_INT,comm);
offsets = (int*)malloc(ntids*sizeof(int));
s=0;
for (i=0; i<ntids; i++)

{offsets[i]=s; s+=sizes[i];}
N = s;
result_array = (int*)malloc(N*sizeof(int));
MPI_Allgatherv

((void*)local_array,n,MPI_INT,(void*)result_array,
sizes,offsets,MPI_INT,comm);

free(sizes); free(offsets);

Allgatherv Example

19

3. Derived Datatypes

20

Derived Datatypes: Motivation

• MPI basic datatypes are predefined for contiguous data of single type
• What if an application needs to communicate data of mixed type or in

non-contiguous locations?
– solutions that involve making multiple MPI calls, copying data into a buffer

and packing, etc., are slow, clumsy and wasteful of memory
– better solution is to create/derive datatypes for these special needs from

existing datatypes
• Derived datatypes can be created recursively at runtime
• Packing and unpacking is done automatically

21

MPI Datatypes

• Elementary: Language-defined types
• Contiguous: Vector with stride of one
• Vector: Elements separated by constant “stride”
• Hvector: Vector, with stride in bytes
• Indexed: Array of indices (for scatter/gather)
• Hindexed: Indexed, with indices in bytes
• Struct: General mixed types (for C structs etc.)

22

blklen=2

stride=5 (in elements)

Vector
(strided)

“Struct”

v_blk_len[0]=3

Indexedcount=3

blocks

v_blk_len[1]=2 v_blk_len[2]=1

v_disp[0]=0 v_disp[1]=5 (in elements) v_disp[2]=12

count=3

elements

type[0] type[1] type[2]

v_disp[0] v_disp[1] (in bytes) v_disp[2]

count=3

blocks

v_blk_len[0]=2 v_blk_len[1]=3 v_blk_len[2]=4

Picturing Some Derived Datatypes

23

mpi_type_vector(count,blocklen,stride,oldtype,vtype,ierr)

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

Array A

call MPI_Type_vector(ncols,1,nrows,MPI_DOUBLE_PRECISION,&
vtype,ierr)

call MPI_Type_commit(vtype,ierr)
call MPI_Send(A(nrows,1),1,vtype...)

ncols = 4
nrows = 5

Using MPI’s Vector Type

• Function MPI_TYPE_VECTOR allows creating non-contiguous vectors
with constant stride. Where might one use it?

24

4. Communicators and Groups

25

MPI_COMM_WORLD
0

1 3

2 4

COMM1

COMM2

Communicators and Groups: Definitions

• All MPI communication is
relative to a communicator
which contains a context
and a group. The group is
just a set of processes.

• Processes may have
different ranks in different
communicators.

MPI_COMM_WORLD

0

0 1

1 2

26

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
myrow = (int)(rank/ncol);
MPI_Comm_split(MPI_COMM_WORLD,myrow,rank,row_comm);

Subdividing Communicators: Approach #1

• To subdivide a communicator into multiple non-overlapping
communicators, one approach is to use MPI_Comm_split

27

Arguments to MPI_Comm_split

1. Communicator to split
2. Key – all processes with the same key go in the same communicator
3. Value to determine ordering in the result communicator (optional)
4. Result communicator

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
myrow = (int)(rank/ncol);
MPI_Comm_split(MPI_COMM_WORLD,myrow,rank,row_comm);

28

Subdividing Communicators: Approach #2

• The same goal can be accomplished using groups
• MPI_Comm_group – extract the group defined by a communicator
• MPI_Group_incl – make a new group from selected members of

the existing group (e.g., members in the same row of a 2D layout)
• MPI_Comm_create – form a communicator based on this group

29

MPI_Group base_grp,grp; MPI_Comm row_comm,temp_comm;
int row_list[NCOL], irow, myrank_in_world;

MPI_Comm_group(MPI_COMM_WORLD,&base_grp); //get base
MPI_Comm_rank(MPI_COMM_WORLD,&myrank_in_world);

irow = (myrank_in_world/NCOL);
for (i=0; i <NCOL; i++) row_list[i] = i;
for (i=0; i <NROW; i++){

MPI_Group_incl(base_grp,NCOL,row_list,&grp);
MPI_Comm_create(MPI_COMM_WORLD,grp,&temp_comm);
if (irow == i) *row_comm=temp_comm;
for (j=0;j<NCOL;j++) row_list[j] += NCOL;

}

Code for Approach #2

30

Communicators and Groups: Summary

• In Approach #1, we used MPI_Comm_split to split one
communicator into multiple non-overlapping communicators.

• This approach is relatively compact and is suitable for regular
decompositions.

• In Approach #2, we broke the communicator into (sub)groups and
made these into new communicators to suit our needs.

• We did this using MPI_Comm_group, MPI_Group_incl, and
MPI_Comm_create.

• This approach is quite flexible and is more generally applicable.
• A number of other group functions are available: union, intersection,

difference, include, exclude, range-include, range-exclude.

31

5. Persistent Communication

32

• Motivation: we’d like to save the argument list of an MPI call to
reduce overhead for subsequent calls with the same arguments

• INIT takes the original argument list of a send or receive call and
creates a persistent communication request from it
– MPI_Send_init (for nonblocking send)
– MPI_Bsend_init (for buffered send – can do Rsend or Ssend as well)
– MPI_Recv_init (for nonblocking receive)

• START starts an operation based on the communication request
– MPI_Start
– MPI_Startall

• REQUEST_FREE frees the persistent communication request
– MPI_Request_free

How Persistent Communication Works

33

MPI_Recv_init(buf1, count,type,src,tag,comm,&req[0]);
MPI_Send_init(buf2, count,type,src,tag,comm,&req[1]);

for (i=1; i < BIGNUM; i++)
{

MPI_Start(&req[0]);
MPI_Start(&req[1]);
MPI_Waitall(2,req,status);
do_work(buf1, buf2);

}

MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);

Typical Situation Where Persistence Might Be Used

34

Improvement in Wallclock Time (IBM SP2)
Persistent vs. Conventional Communication

size, bytes mode improvement mode improvement
8 async 19 % sync 15 %
4096 async 11 % sync 4.7 %
8192 async 5.9 % sync 2.9 %
800,000 - - sync 0 %
8,000,000 - - sync 0 %

Performance Benefits from Using Persistence

• Takeaway: it’s most effective when applied to lots of small messages

35

6. Parallel I/O (MPI-2)

36

What is Parallel I/O?

• HPC Parallel I/O occurs when:
– multiple MPI tasks can read or write simultaneously,
– from or to a single file,
– in a parallel file system,
– through the MPI-IO interface.

• A parallel file system works by:
– appearing as a normal Unix file system, while
– employing multiple I/O servers (usually) for high sustained throughput.

• Two common alternatives to parallel MPI-IO are:
1. Rank 0 accesses a file; it gathers/scatters file data from/to other ranks.
2. Each rank opens a separate file and does I/O to it independently.

37

Why Parallel I/O?

• I/O was lacking from the MPI-1 specification
• Due to need, it was defined independently, then subsumed into MPI-2
• HPC Parallel I/O requires some extra work, but it

– potentially provides high throughput and
– offers a single (unified) file for viz and pre/post processing.

• Alternative I/O schemes are simple enough to code, but have either
– poor scalability (e.g., single task is a bottleneck) or
– file management challenges (e.g., files must be collected from local disk).

• MPI-IO provides
– mechanisms for performing synchronization,
– syntax for data movement, and
– means for defining noncontiguous data layout in a file (MPI datatypes).

38

FILE

P0
P1
P2

P(n-1)

P# is a single processor with rank #.

…

memory
memory
memory

Simple MPI-IO

Each MPI task reads/writes a single block:

memory

39

MPI_File fh;
MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;
nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, rank*bufsize, MPI_SEEK_SET);
MPI_File_read(fh, buf, nints, MPI_INT, &status);
MPI_File_close(&fh);

Reading by Using Individual File Pointers – C Code

40

include 'mpif.h'
integer status(MPI_STATUS_SIZE)
integer (kind=MPI_OFFSET_KIND) offset

nints = FILESIZE/(nprocs*INTSIZE)
offset = rank * nints * INTSIZE

call MPI_FILE_OPEN(MPI_COMM_WORLD, '/pfs/datafile', &
MPI_MODE_RDONLY, &
MPI_INFO_NULL, fh, ierr)

call MPI_FILE_READ_AT(fh, offset, buf, nints,
MPI_INTEGER, status, ierr)

call MPI_FILE_CLOSE(fh, ierr)

Reading by Using Explicit Offsets – F90 Code

41

Writing with Pointers and Offsets; Shared Pointers

• Use MPI_File_write or MPI_File_write_at
• MPI_File_open flags:

– MPI_MODE_WRONLY (write only)
– MPI_MODE_RDWR (read and write)
– MPI_MODE_CREATE (create file if it doesn’t exist)
– Use bitwise-or ‘|’ in C, or addition ‘+” in Fortran, to combine multiple flags

Shared Pointers
• Create one implicitly-maintained pointer per collective file open

– MPI_File_read_shared
– MPI_File_write_shared
– MPI_File_seek_shared

42

Noncontiguous Accesses

• Common in parallel applications
– example: distributed arrays stored in files

• A big advantage of MPI I/O over Unix I/O is the ability to specify
noncontiguous accesses in a file and a memory buffer
– do this by using derived datatypes within a single MPI function call
– allows implementation to optimize the access

• Collective I/O combined with noncontiguous accesses yields the
highest performance

43

File Views

• A view is a triplet of arguments (displacement, etype, filetype) that is
passed to MPI_File_set_view

• displacement = number of bytes to be skipped from the start of the file

• etype = basic unit of data access (can be any basic or derived
datatype)

• filetype = specifies layout of etypes within file

44

etype = MPI_DOUBLE_PRECISION elementary datatype

filetype = myPattern derived datatype, sees every 4th DP

displacement
VIEW: each task repeats myPattern

with different displacements
head of file

… task0
task1
task2
task3

…
…
…

file

Example #1: File Views for a Four-Task Job

…

45

File

P0 P1 P2 P3

Example #2: File Views for a Four-Task Job

• 1 block from each task, written in task order

MPI_File_set_view assigns regions of the file to separate processes

46

#define N 100
MPI_Datatype arraytype;
MPI_Offset disp;

disp = rank*sizeof(int)*N; etype = MPI_INT;
MPI_Type_contiguous(N, MPI_INT, &arraytype);
MPI_Type_commit(&arraytype);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_RDWR,
MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, arraytype,
"native", MPI_INFO_NULL);

MPI_File_write(fh, buf, N, etype, MPI_STATUS_IGNORE);

Code for Example #2

47

File

P0 P1 P2 P3NW NW

Example #3: File Views for a Four-Task Job

• 2 blocks from each task, written in round-robin fashion to a file

MPI_File_set_view assigns regions of the file to separate processes

48

Code for Example #3
int buf[NW*2];

MPI_File_open(MPI_COMM_WORLD, "/data2",
MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

/* want to see 2 blocks of NW ints, NW*npes apart */
MPI_Type_vector(2, NW, NW*npes, MPI_INT, &fileblk);
MPI_Type_commit(&fileblk);
disp = (MPI_Offset)rank*NW*sizeof(int);
MPI_File_set_view(fh, disp, MPI_INT, fileblk,

"native", MPI_INFO_NULL);

/* processor writes 2 'ablk', each with NW ints */
MPI_Type_contiguous(NW, MPI_INT, &ablk);
MPI_Type_commit(&ablk);
MPI_File_write(fh, (void *)buf, 2, ablk, &status);

49

Small individual
requests

Large collective
access

Collective I/O in MPI

• A critical optimization in parallel I/O
• Allows communication of “big picture” to file system
• Framework for 2-phase I/O, in which communication precedes I/O

(uses MPI machinery)
• Basic idea: build large blocks, so that reads/writes in I/O system will

be large

50

MPI Routines for Collective I/O

• Typical routine names:
– MPI_File_read_all
– MPI_File_read_at_all, etc.

• The _all indicates that all processes in the group specified by the
communicator passed to MPI_File_open will call this function

• Each process provides nothing beyond its own access information;
therefore, the argument list is the same as for the non-collective
functions

51

Advantages of Collective I/O

• By calling the collective I/O functions, the user allows an
implementation to optimize the request based on the combined
requests of all processes

• The implementation can merge the requests of different processes
and service the merged request efficiently

• Particularly effective when the accesses of different processes are
noncontiguous and interleaved

52

Original memory layout on 4 processors

then writes to File layout

MPI collects in temporary buffers

Collective I/O: Memory Layout, Communication

53

More Advanced I/O

• Asynchronous I/O:
– iwrite/iread
– terminate with MPI_Wait

• Split operations:
– read_all_begin/end
– write_all_begin/end

– give the system more chance to optimize

54

Passing Hints to the Implementation
MPI_Info info;
MPI_Info_create(&info);

/* no. of I/O devices to be used for file striping */
MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */
MPI_Info_set(info, "striping_unit", "65536");

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",
MPI_MODE_CREATE | MPI_MODE_RDWR,
info, &fh);

MPI_Info_free(&info);

55

Examples of Hints (Used in ROMIO)
• striping_unit
• striping_factor
• cb_buffer_size
• cb_nodes

• ind_rd_buffer_size
• ind_wr_buffer_size

• start_iodevice
• pfs_svr_buf
• direct_read
• direct_write

MPI-2 predefined hints

New algorithm
parameters

Platform-specific hints

56

Summary of Parallel I/O Issues

• MPI-IO has many features that can help users achieve high
performance

• The most important of these features are:
– the ability to specify noncontiguous accesses
– the collective I/O functions
– the ability to pass hints to the implementation

• Use is encouraged, because I/O is expensive!
• In particular, when accesses are noncontiguous, users must:

– create derived datatypes
– define file views
– use the collective I/O functions

57

7. Status of MPI-2

58

Features of MPI-2

• Parallel I/O (MPI-IO) – probably the most popular
• One-sided communication (put / get)
• Dynamic process management (spawn)
• Expanded collective communication operations (e.g., non-blocking)
• Support for multithreading
• Additional support for programming languages

– C++ interface
– limited F90 support
– interfaces for debuggers, profilers

59

MPI-2 Status Assessment

• Virtually all vendors offer MPI-1
– Well-established free implementations (MPICH, OpenMPI) support

networks of heterogeneous workstations, e.g.
– The functionality of MPI-1 (or even a subset) is sufficient for most

applications
• Partial MPI-2 implementations are available from most vendors
• MPI-2 implementations tend to appear piecemeal, with I/O first

– MPI-IO now available in most MPI implementations
– One-sided communication available in some
– OpenMPI (aka LAM) and MPICH2 now becoming complete
– Dynamic process management may not mesh well with batch systems

60

References

• William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI,
Second Edition (MIT Press, 1999)

• William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI-2 (MIT
Press, 1999)

http://www.scribd.com/doc/28220855/Using-MPI-2-Advanced-Features

• Index to the MPI 1.1 standard
http://www.mpi-forum.org/docs/mpi-11-html/node182.html

• Index to the MPI 2 standard
http://www.mpi-forum.org/docs/mpi-20-html/node306.htm

• The I/O Stress Benchmark Codes
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/ior/

http://www.scribd.com/doc/28220855/Using-MPI-2-Advanced-Features
http://www.mpi-forum.org/docs/mpi-20-html/node306.htm
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/ior

	Programming with MPI:�Advanced Topics
	Goals
	Introduction and Outline
	1. Advanced Point-to-Point Communication
	Standard Send, Receive
	Synchronous and Buffered Modes
	Ready Mode and Deadlock
	Discussion of Send Modes
	MPI_Sendrecv and MPI_Sendrecv_replace
	Non-Blocking Calls
	Use of Non-Blocking Communication
	MPI_Wait and MPI_Test
	Other Ways to Gain Flexibility in Communication
	Slide Number 14
	Review: Scatter and Gather
	Introducing Scatterv, Gatherv
	Scatter vs. Scatterv
	Allgatherv Example
	3. Derived Datatypes
	Derived Datatypes: Motivation
	MPI Datatypes
	Picturing Some Derived Datatypes
	Using MPI’s Vector Type
	4. Communicators and Groups
	Communicators and Groups: Definitions
	Subdividing Communicators: Approach #1
	Arguments to MPI_Comm_split
	Subdividing Communicators: Approach #2
	Code for Approach #2
	Communicators and Groups: Summary
	5. Persistent Communication
	How Persistent Communication Works
	Typical Situation Where Persistence Might Be Used
	Performance Benefits from Using Persistence
	6. Parallel I/O (MPI-2)
	What is Parallel I/O?
	Why Parallel I/O?
	Simple MPI-IO
	Reading by Using Individual File Pointers – C Code
	Reading by Using Explicit Offsets – F90 Code
	Writing with Pointers and Offsets; Shared Pointers
	Noncontiguous Accesses
	File Views
	Example #1: File Views for a Four-Task Job
	Example #2: File Views for a Four-Task Job
	Code for Example #2
	Example #3: File Views for a Four-Task Job
	Code for Example #3
	Collective I/O in MPI
	MPI Routines for Collective I/O
	Advantages of Collective I/O
	Collective I/O: Memory Layout, Communication
	More Advanced I/O
	Passing Hints to the Implementation
	Examples of Hints (Used in ROMIO)
	Summary of Parallel I/O Issues
	7. Status of MPI-2
	Features of MPI-2
	MPI-2 Status Assessment
	References

