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Goals

• To gain an awareness of specialized features in MPI that you may 
want to use right away in writing parallel applications

• To create a little mental catalog of MPI’s more advanced capabilities 
for future reference

At the end of each section, let’s ask:
• Why was this set of routines included?  What might they be good for?
• Can we think of an example where they would be useful?
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Introduction and Outline

1. Advanced point-to-point communication
2. Collective communication with non-contiguous data
3. Derived datatypes
4. Communicators and groups
5. Persistent communication
6. Parallel I/O (MPI-2)
7. Status of MPI-2
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1. Advanced Point-to-Point 
Communication
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Standard Send, Receive

Standard-Mode Blocking Calls:
MPI_Send, MPI_Recv

• MPI_Send returns only when 
the buffer is safe to reuse:
– the small message has 

been copied elsewhere, or
– the large message has 

actually been transferred;
– the small/large threshold is 

implementation dependent
• Rule of thumb: a send only 

completes if a matching 
receive is posted/executed
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Synchronous and Buffered Modes

Synchronous Mode: MPI_Ssend 
• Transfer is not initiated until 

matching receive is posted
• Non-local: handshake needed
• Returns after message is sent
Buffered Mode: MPI_Bsend
• Completes as soon as the 

message is copied into the 
user-provided buffer

• Buffer must be provided using 
MPI_Buffer_attach

• One buffer per process
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Ready Mode and Deadlock

Ready Mode: MPI_Rsend
• Initiates transfer immediately 
• Assumes that a matching 

receive has already been 
posted

• Error if receiver isn’t ready
Deadlock
• All tasks are waiting for events 

that yet haven’t been initiated
• Can be avoided by reordering 

calls, by using non-blocking 
calls, or with MPI_Sendrecv
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• Synchronous mode is portable and “safe”
– does not depend on order (ready mode) or buffer space (buffered mode)
– incurs substantial overhead

• Ready mode has least total overhead, but how can error be avoided?
– sometimes the logic of the code implies the receiver must be ready

• Buffered mode decouples sender and receiver
– sender doesn’t have to sync; receiver doesn’t have to be ready
– time and memory overheads are incurred by copying to the buffer
– sender can control size of message buffers and total amount of space

• Standard mode tries to strike a balance
– small messages are buffered on receiver’s side (avoiding sync overhead)
– large messages are sent synchronously (avoiding big buffer space)

Discussion of Send Modes



9

• MPI_Sendrecv (blocking)
– send message A from one buffer; receive message B in another buffer
– destination of A, source of B can be same or different

• MPI_Sendrecv_replace (blocking)
– send message A from one buffer; receive message B in SAME buffer
– again, destination of A, source of B can be same or different
– system takes care of the extra internal buffering

• Illustration 1: data swap between processors
– destination and source are identical

• Illustration 2: chain of processors
– send result to myrank+1, receive next input from myrank-1

MPI_Sendrecv and MPI_Sendrecv_replace
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Non-Blocking Calls

• Calls return immediately
• System handles buffering
• Not “safe” to access message 

contents until action is known 
to be completed

• With MPI_Isend, message 
buffer is reusable right away 
if tag or receiver is different; 
otherwise, check status

• With MPI_Irecv, user must 
always check for data; only 
small messages are buffered useful work 

may be done
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for (i=0;i<M;i++) MPI_Irecv( <declare receive buffers> );
for (i=0;i<N;i++) MPI_Isend( <mark data for sending> );

/* Do local operations */
MPI_Waitall( <make sure all receives finish> )

/* Operate on received data */
MPI_Waitall( <clear request handles for all sends> )

Use of Non-Blocking Communication

• Non-blocking calls permit overlap of computation and communication
• All send modes are available: MPI_Irsend, MPI_Ibsend, MPI_Issend
• Non-blocking calls must normally be resolved through a second call

– main options: MPI_Wait, MPI_Test, MPI_Cancel, MPI_Request_free
– variants like MPI_Waitany help to resolve calls in arbitrary order
– reason for doing this: avoid running out of request handles

• Outline for typical code:
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• MPI_Wait halts progress until a specific non-blocking request (send 
or receive) is satisfied; the related message buffer is then safe to use
– MPI_Waitall does the same thing for a whole array of requests
– MPI_Waitany waits for any one request from an array
– MPI_Waitsome waits for one or more requests from an array

• MPI_Test immediately returns the status (no waiting!) of a specific 
non-blocking operation, again identified by a request handle
– returns flag = true only if the operation is complete
– allows alternative instructions to be carried out if operation isn’t complete
– has the same variants: MPI_Testall, MPI_Testany, MPI_Testsome

MPI_Testany(int count, MPI_Request *array_of_reqs,
int *index, int *flag, MPI_Status *status);

MPI_Wait and MPI_Test
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• MPI_ANY_SOURCE, MPI_ANY_TAG are “wildcards” that may be 
used by receives (blocking and non-blocking) in situations where the 
source or tag of a message does not need to be known in advance
– the status argument returns source, tag, and error status
– a separate call to MPI_Get_count determines the size of the message
– but… what if you need to know a message’s size before receiving it?

• MPI_Iprobe returns the properties of any message that has arrived 
without receiving it into a buffer (maybe you need to do a big malloc!)

• MPI_Probe blocks until such a message arrives (no flag)

Other Ways to Gain Flexibility in Communication

MPI_Iprobe(int source, int tag, MPI_Comm comm,
int *flag, MPI_Status *status);
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2. Collective Communication
with Non-Contiguous Data
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Review: Scatter and Gather
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Introducing Scatterv, Gatherv

• MPI_{Scatter,Gather,Allgather}v
• What does v stand for?

– varying size and relative location of messages
• Advantages

– more flexibility
– less need to copy data into temporary buffers
– more compact

• Disadvantage
– harder to program
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Scatter vs. Scatterv

CALL mpi_scatterv ( SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE,     
RECVBUF, RECVCOUNT,          RECVTYPE,
ROOT, COMM, IERR ) 

• SENDCOUNTS(J) is the number of items of type SENDTYPE to send from 
process ROOT to process J.  Defined on ROOT. 

• DISPLS(J) is the displacement from SENDBUF to the beginning of the J-th 
message, in units of SENDTYPE.  Defined on ROOT. 



18

MPI_Comm_size(comm,&ntids); 
sizes = (int*)malloc(ntids*sizeof(int)); 
MPI_Allgather(&n,1,MPI_INT,sizes,1,MPI_INT,comm);
offsets = (int*)malloc(ntids*sizeof(int)); 
s=0; 
for (i=0; i<ntids; i++)

{offsets[i]=s; s+=sizes[i];}
N = s;
result_array = (int*)malloc(N*sizeof(int)); 
MPI_Allgatherv

((void*)local_array,n,MPI_INT,(void*)result_array,
sizes,offsets,MPI_INT,comm); 

free(sizes); free(offsets);

Allgatherv Example
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3. Derived Datatypes
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Derived Datatypes: Motivation

• MPI basic datatypes are predefined for contiguous data of single type
• What if an application needs to communicate data of mixed type or in 

non-contiguous locations?
– solutions that involve making multiple MPI calls, copying data into a buffer 

and packing, etc., are slow, clumsy and wasteful of memory
– better solution is to create/derive datatypes for these special needs from 

existing datatypes
• Derived datatypes can be created recursively at runtime
• Packing and unpacking is done automatically
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MPI Datatypes

• Elementary: Language-defined types
• Contiguous: Vector with stride of one
• Vector: Elements separated by constant “stride” 
• Hvector: Vector, with stride in bytes
• Indexed: Array of indices (for scatter/gather) 
• Hindexed: Indexed, with indices in bytes
• Struct: General mixed types (for C structs etc.)
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blklen=2

stride=5 (in elements)

Vector 
(strided)

“Struct”

v_blk_len[0]=3

Indexedcount=3

blocks

v_blk_len[1]=2 v_blk_len[2]=1

v_disp[0]=0 v_disp[1]=5 (in elements) v_disp[2]=12

count=3

elements

type[0] type[1] type[2]

v_disp[0] v_disp[1] (in bytes) v_disp[2]

count=3

blocks

v_blk_len[0]=2 v_blk_len[1]=3 v_blk_len[2]=4

Picturing Some Derived Datatypes
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mpi_type_vector(count,blocklen,stride,oldtype,vtype,ierr)

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

Array A

call MPI_Type_vector(ncols,1,nrows,MPI_DOUBLE_PRECISION,&
vtype,ierr)

call MPI_Type_commit(vtype,ierr)
call MPI_Send(A(nrows,1),1,vtype...)

ncols = 4
nrows = 5

Using MPI’s Vector Type

• Function MPI_TYPE_VECTOR allows creating non-contiguous vectors 
with constant stride.  Where might one use it?
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4. Communicators and Groups



25

MPI_COMM_WORLD
0

1 3

2 4

COMM1

COMM2

Communicators and Groups: Definitions

• All MPI communication is 
relative to a communicator
which contains a context
and a group. The group is 
just a set of processes.

• Processes may have 
different ranks in different 
communicators.

MPI_COMM_WORLD

0

0 1

1 2
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MPI_Comm_rank(MPI_COMM_WORLD,&rank);
myrow = (int)(rank/ncol);
MPI_Comm_split(MPI_COMM_WORLD,myrow,rank,row_comm);

Subdividing Communicators: Approach #1

• To subdivide a communicator into multiple non-overlapping 
communicators, one approach is to use MPI_Comm_split
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Arguments to MPI_Comm_split

1. Communicator to split
2. Key – all processes with the same key go in the same communicator
3. Value to determine ordering in the result communicator (optional)
4. Result communicator

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
myrow = (int)(rank/ncol);
MPI_Comm_split(MPI_COMM_WORLD,myrow,rank,row_comm);
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Subdividing Communicators: Approach #2

• The same goal can be accomplished using groups
• MPI_Comm_group – extract the group defined by a communicator
• MPI_Group_incl – make a new group from selected members of 

the existing group (e.g., members in the same row of a 2D layout)
• MPI_Comm_create – form a communicator based on this group
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MPI_Group base_grp,grp;  MPI_Comm row_comm,temp_comm; 
int row_list[NCOL], irow, myrank_in_world;

MPI_Comm_group(MPI_COMM_WORLD,&base_grp); //get base
MPI_Comm_rank(MPI_COMM_WORLD,&myrank_in_world); 

irow = (myrank_in_world/NCOL); 
for (i=0; i <NCOL; i++)  row_list[i] = i;
for (i=0; i <NROW; i++){

MPI_Group_incl(base_grp,NCOL,row_list,&grp); 
MPI_Comm_create(MPI_COMM_WORLD,grp,&temp_comm); 
if (irow == i) *row_comm=temp_comm; 
for (j=0;j<NCOL;j++) row_list[j] += NCOL;

} 

Code for Approach #2
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Communicators and Groups: Summary

• In Approach #1, we used MPI_Comm_split to split one 
communicator into multiple non-overlapping communicators. 

• This approach is relatively compact and is suitable for regular 
decompositions.

• In Approach #2, we broke the communicator into (sub)groups and 
made these into new communicators to suit our needs.

• We did this using MPI_Comm_group, MPI_Group_incl, and
MPI_Comm_create.

• This approach is quite flexible and is more generally applicable.
• A number of other group functions are available: union, intersection, 

difference, include, exclude, range-include, range-exclude.
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5. Persistent Communication
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• Motivation: we’d like to save the argument list of an MPI call to 
reduce overhead for subsequent calls with the same arguments

• INIT takes the original argument list of a send or receive call and 
creates a persistent communication request from it
– MPI_Send_init  (for nonblocking send)
– MPI_Bsend_init (for buffered send – can do Rsend or Ssend as well)
– MPI_Recv_init  (for nonblocking receive)

• START starts an operation based on the communication request
– MPI_Start
– MPI_Startall

• REQUEST_FREE frees the persistent communication request
– MPI_Request_free

How Persistent Communication Works
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MPI_Recv_init(buf1, count,type,src,tag,comm,&req[0]);
MPI_Send_init(buf2, count,type,src,tag,comm,&req[1]);

for (i=1; i < BIGNUM; i++)
{

MPI_Start(&req[0]);
MPI_Start(&req[1]);
MPI_Waitall(2,req,status);
do_work(buf1, buf2);

}

MPI_Request_free(&req[0]);
MPI_Request_free(&req[1]);

Typical Situation Where Persistence Might Be Used
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Improvement in Wallclock Time (IBM SP2)
Persistent vs. Conventional Communication

size, bytes mode        improvement mode     improvement
8 async 19 % sync 15 %
4096 async 11 % sync 4.7 %
8192 async 5.9 % sync 2.9 %
800,000 - - sync 0 %
8,000,000 - - sync 0 %

Performance Benefits from Using Persistence

• Takeaway: it’s most effective when applied to lots of small messages
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6. Parallel I/O (MPI-2)
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What is Parallel I/O?

• HPC Parallel I/O occurs when:
– multiple MPI tasks can read or write simultaneously,
– from or to a single file,
– in a parallel file system,
– through the MPI-IO interface.

• A parallel file system works by:
– appearing as a normal Unix file system, while
– employing multiple I/O servers (usually) for high sustained throughput.

• Two common alternatives to parallel MPI-IO are:
1. Rank 0 accesses a file; it gathers/scatters file data from/to other ranks.
2. Each rank opens a separate file and does I/O to it independently.
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Why Parallel I/O?

• I/O was lacking from the MPI-1 specification
• Due to need, it was defined independently, then subsumed into MPI-2
• HPC Parallel I/O requires some extra work, but it

– potentially provides high throughput and
– offers a single (unified) file for viz and pre/post processing.

• Alternative I/O schemes are simple enough to code, but have either
– poor scalability (e.g., single task is a bottleneck) or
– file management challenges (e.g., files must be collected from local disk).

• MPI-IO provides
– mechanisms for performing synchronization,
– syntax for data movement, and
– means for defining noncontiguous data layout in a file (MPI datatypes).



38

FILE

P0
P1
P2

P(n-1)

P# is a single processor with rank #.

…

memory
memory
memory

Simple MPI-IO

Each MPI task reads/writes a single block:

memory
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MPI_File fh;
MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;
nints   = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", 
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(  fh, rank*bufsize, MPI_SEEK_SET);
MPI_File_read(  fh, buf, nints,   MPI_INT, &status);
MPI_File_close(&fh);

Reading by Using Individual File Pointers – C Code
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include 'mpif.h'
integer status(MPI_STATUS_SIZE)
integer (kind=MPI_OFFSET_KIND) offset

nints  = FILESIZE/(nprocs*INTSIZE)
offset = rank * nints * INTSIZE

call MPI_FILE_OPEN( MPI_COMM_WORLD, '/pfs/datafile', &
MPI_MODE_RDONLY,                 &
MPI_INFO_NULL, fh, ierr)

call MPI_FILE_READ_AT( fh, offset, buf, nints,
MPI_INTEGER, status, ierr)

call MPI_FILE_CLOSE(fh, ierr)

Reading by Using Explicit Offsets – F90 Code
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Writing with Pointers and Offsets; Shared Pointers

• Use MPI_File_write or MPI_File_write_at
• MPI_File_open flags:

– MPI_MODE_WRONLY (write only)
– MPI_MODE_RDWR (read and write)
– MPI_MODE_CREATE (create file if it doesn’t exist)
– Use bitwise-or ‘|’ in C, or addition ‘+” in Fortran, to combine multiple flags

Shared Pointers
• Create one implicitly-maintained pointer per collective file open

– MPI_File_read_shared
– MPI_File_write_shared
– MPI_File_seek_shared
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Noncontiguous Accesses

• Common in parallel applications
– example: distributed arrays stored in files

• A big advantage of MPI I/O over Unix I/O is the ability to specify 
noncontiguous accesses in a file and a memory buffer
– do this by using derived datatypes within a single MPI function call 
– allows implementation to optimize the access

• Collective I/O combined with noncontiguous accesses yields the 
highest performance
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File Views

• A view is a triplet of arguments (displacement, etype, filetype) that is 
passed to MPI_File_set_view

• displacement = number of bytes to be skipped from the start of the file

• etype = basic unit of data access (can be any basic or derived 
datatype)

• filetype = specifies layout of etypes within file
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etype = MPI_DOUBLE_PRECISION elementary datatype

filetype = myPattern derived datatype, sees every 4th DP

displacement
VIEW:  each task repeats myPattern 

with different displacements
head of file

… task0
task1
task2
task3

…
…
…

file

Example #1: File Views for a Four-Task Job

…
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File

P0 P1 P2 P3

Example #2: File Views for a Four-Task Job

• 1 block from each task, written in task order

MPI_File_set_view assigns regions of the file to separate processes
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#define N 100
MPI_Datatype arraytype;
MPI_Offset disp;

disp = rank*sizeof(int)*N; etype = MPI_INT;
MPI_Type_contiguous(N, MPI_INT, &arraytype);
MPI_Type_commit(&arraytype);

MPI_File_open(    MPI_COMM_WORLD, "/pfs/datafile", 
MPI_MODE_CREATE | MPI_MODE_RDWR,
MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, arraytype, 
"native", MPI_INFO_NULL);

MPI_File_write(fh, buf, N, etype, MPI_STATUS_IGNORE);

Code for Example #2
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File

P0 P1 P2 P3NW NW

Example #3: File Views for a Four-Task Job

• 2 blocks from each task, written in round-robin fashion to a file

MPI_File_set_view assigns regions of the file to separate processes
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Code for Example #3
int buf[NW*2];

MPI_File_open(MPI_COMM_WORLD, "/data2", 
MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

/* want to see 2 blocks of NW ints, NW*npes apart */
MPI_Type_vector(2, NW, NW*npes, MPI_INT, &fileblk);
MPI_Type_commit(                         &fileblk);
disp = (MPI_Offset)rank*NW*sizeof(int);
MPI_File_set_view(fh, disp, MPI_INT, fileblk, 

"native", MPI_INFO_NULL);

/* processor writes 2 'ablk', each with NW ints */
MPI_Type_contiguous(NW,   MPI_INT, &ablk);
MPI_Type_commit(&ablk);
MPI_File_write(fh, (void *)buf, 2, ablk, &status);



49

Small individual
requests

Large collective
access

Collective I/O in MPI

• A critical optimization in parallel I/O
• Allows communication of “big picture” to file system
• Framework for 2-phase I/O, in which communication precedes I/O 

(uses MPI machinery)
• Basic idea:  build large blocks, so that reads/writes in I/O system will 

be large
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MPI Routines for Collective I/O

• Typical routine names:
– MPI_File_read_all
– MPI_File_read_at_all, etc.

• The _all indicates that all processes in the group specified by the 
communicator passed to MPI_File_open will call this function

• Each process provides nothing beyond its own access information; 
therefore, the argument list is the same as for the non-collective 
functions
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Advantages of Collective I/O

• By calling the collective I/O functions, the user allows an 
implementation to optimize the request based on the combined 
requests of all processes

• The implementation can merge the requests of different processes 
and service the merged request efficiently

• Particularly effective when the accesses of different processes are 
noncontiguous and interleaved
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Original memory layout on 4 processors

then writes to File layout

MPI collects in temporary buffers

Collective I/O: Memory Layout, Communication
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More Advanced I/O

• Asynchronous I/O:
– iwrite/iread
– terminate with MPI_Wait

• Split operations:
– read_all_begin/end
– write_all_begin/end

– give the system more chance to optimize
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Passing Hints to the Implementation
MPI_Info info;
MPI_Info_create(&info);

/* no. of I/O devices to be used for file striping */
MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */
MPI_Info_set(info, "striping_unit", "65536");

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", 
MPI_MODE_CREATE | MPI_MODE_RDWR,
info, &fh);

MPI_Info_free(&info);
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Examples of Hints (Used in ROMIO)
• striping_unit
• striping_factor
• cb_buffer_size
• cb_nodes

• ind_rd_buffer_size
• ind_wr_buffer_size

• start_iodevice
• pfs_svr_buf
• direct_read
• direct_write

MPI-2 predefined hints

New algorithm 
parameters

Platform-specific hints
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Summary of Parallel I/O Issues

• MPI-IO has many features that can help users achieve high 
performance

• The most important of these features are:
– the ability to specify noncontiguous accesses
– the collective I/O functions
– the ability to pass hints to the implementation

• Use is encouraged, because I/O is expensive!
• In particular, when accesses are noncontiguous, users must:

– create derived datatypes
– define file views
– use the collective I/O functions
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7. Status of MPI-2
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Features of MPI-2

• Parallel I/O (MPI-IO) – probably the most popular
• One-sided communication (put / get)
• Dynamic process management (spawn)
• Expanded collective communication operations (e.g., non-blocking)
• Support for multithreading
• Additional support for programming languages

– C++ interface
– limited F90 support 
– interfaces for debuggers, profilers
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MPI-2 Status Assessment

• Virtually all vendors offer MPI-1
– Well-established free implementations (MPICH, OpenMPI) support 

networks of heterogeneous workstations, e.g.
– The functionality of MPI-1 (or even a subset) is sufficient for most 

applications 
• Partial MPI-2 implementations are available from most vendors
• MPI-2 implementations tend to appear piecemeal, with I/O first

– MPI-IO now available in most MPI implementations
– One-sided communication available in some
– OpenMPI (aka LAM) and MPICH2 now becoming complete
– Dynamic process management may not mesh well with batch systems
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