
Parallel Visualization

Greg Abram*

*with a little help from my friends

Parallel Systems Background

• “Node”: analogous to a workstation, laptop etc:
– 1 or more CPUs (or cores)

– Physical resources: memory, I/O devices, graphics etc.

• “Process”: An instance of a program
– “Virtualized” resources – notably, memory

 “Parallel process”
 Shared-memory or “Multi-core”

 1 process – so 1 memory space

 >1 “threads of execution” running on >1 cores (OpenMP, pthreads)

Requires intra-process synchronization

 Distributed-memory
 >1 process

Communicate by message-passing (MPI)

 1 process / node – or processes must share physical resources of node

Other approaches:

• Co-Processors

– Node hosts an accelerator – special processor

programmed separately from main processor(s)

– Program manages parallel execution on

accelerator

– GPGPU, Cell Processor, Cuda (Nvidia), OpenCl

• Hybrids

– Distributed multi-threaded processes

– … with accelerators?

Parallel Visualization

• Why? Performance

– Processing may be too slow on one CPU

• Interactive visualization requires real-time frame rates

• Use lots of CPUs

• Shared-memory/multicore or distributed

– Data may be too big for available node

• Virtual memory works, but paging is slow

• Use lots of nodes to increase physical memory size

• Big shared-memory/multicore scaling is costly ($/CPU)

TACC Parallel Visualization Systems

Login Node(s)

Lustre Parallel

File System
…

System nodes

In
te

rc
o

n
n

e
c
t

Spur or Longhorn

TACC Parallel Visualization Systems

Login Node(s)

Lustre Parallel

File System
…

System nodes

In
te

rc
o

n
n

e
c
t

Local

Disk

CPU 0

CPU n

… Memory

gfx 0

gfx n

…

Spur or Longhorn

TACC Parallel Visualization Systems

• Spur

– 8 nodes

– 16 cores per node (128 total)

– 4 GPUs per node (32 total)

– DDR (dual data rate) Infiniband interconnect

• Longhorn

– 256 nodes

– 8 cores per node (2048 total)

– 2 GPUs per node (512 total)

– QDR (quad data rate) Infiniband interconnect

Visualization In Parallel

Parallel Visualization Apps At TACC

• Ensight Gold, Paraview and VisIT

• (I don’t know much about Ensight, we’ll focus on

ParaView and VisIt)

• PV and Visit are very similar in many ways:
– Based on VTK

– Client/Server Architecture

Client

App
App

GUI

Server

Process
Data

Parallel Visualization Apps At TACC

• Both utilize a distributed, data-parallel serve

architecture

Client

App
App

GUI

Server

Process
Data Server

Process
Data Server

Process
Data Server

Process
Data Server

Process
Data Server

Process
Data Server

Process
Data Server

Process

 n

Data

n

Mapping Parallel PV, VisIt to TACC

Visualization Systems

1. Allocate set of nodes on visualization system. This will start a VNC

server one one node, which you will connect to (as before)

Login Node(s)

Lustre Parallel

File System
…

System nodes

In
te

rc
o

n
n

e
c
t

VNC

viewer

Mapping Parallel PV, VisIt to TACC

Visualization Systems

2. From that desktop, launch the PV or VisIt Client App

Login Node(s)

Lustre Parallel

File System
…

System nodes

In
te

rc
o

n
n

e
c
t

VNC

viewer

PV/VisIt

GUI

Mapping Parallel PV, VisIt to TACC

Visualization Systems

3. Start PV or VisIt Server Processes
 - PV, from command line; VisIt through GUI

Login Node(s)

Lustre Parallel

File System
…

System nodes

In
te

rc
o

n
n

e
c
t

VNC

viewer

PV/VisIt

GUI

Mapping Parallel PV, VisIt to TACC

Visualization Systems

4. Multiple processes/node to take advantage of multiple cores/node

Login Node(s)

Lustre Parallel

File System
…

System nodes

In
te

rc
o

n
n

e
c
t

VNC

viewer

PV/VisIt

GUI

Way-ness: The Number of

Processes Per Node

Process memory is limited to 1/n of node memory for each of n

processes on that node If you need large memory per process,

use fewer processes per node

Why would you need to?

– Data is partitioned in large chunks

– Visualization algorithms can expand the data

Way-ness is set up at allocation time

– Parallel jobs launched from VNC desktop will adopt the way-ness specified

when the VNC server job is launched

– VNC sessions launched through the portal are full-way

Parallel Sessions on Longhorn

via the Portal

1. VNC password should already be set

2. Browse to: portal.longhorn.tacc.utexas.edu

3. Select VNC as the session type

4. This time, specify number of nodes = k, to get k nodes

or 8*k processes

– Way-ness will be full – “#slots” will be the number of processes

you get

5. Hit Select and wait a few seconds….

6. Go to the “Rendering” tab and enter your VNC

password

* If you return to the “Resources” page and find your job, you will see it running on 8*k cores.

Parallel Sessions on Longhorn

via qsub

1. VNC password should already be set

2. ssh to longhorn: ssh longhorn.tacc.utexas.edu

3. qsub a VNC session:

qsub [qsub options] /share/sge6.2/default/pe_scripts/job.vnc [vnc options]

Required qsub options:

 -P project_type one of vis, data, gpgpu, or hpc

 -q queue one of normal, long, largemem, devel

 -A allocation if >1 available, choose one

 -pe wayness ncores job size

several more, see the docs

Running Paraview in Parallel

1. Start it as before: in the white xterm,
module paraview

vglrun paraview

Paraview will appear

2. In a second xterm, start the parallel server…
module paraview

(csh) env NO_HOSTSORT=1 ibrun tacc_xrun pvserver

(bash) NO_HOSTSORT=1 ibrun tacc_xrun pvserver

You will see “Waiting for client…”

Running Parallel Paraview (2)

3. Connect client to server

a. Click File->Connect to bring up Choose Server dialog

b. If first time:

i. Click Add Server

ii. Set the server configuration name to “manual”

iii. Click Configure

iv. From Startup Type select Manual and click Save

c. Select manual from the list and click Connect

In client xterm, you should see “Waiting for server…”

In server xterm, you should see “Client connected.”

Running VisIt in Parallel

• Its really easy….

module load visit

vglrun visit

Paraview In Parallel

• Demonstrate:
– Click Sources->Sphere

– Max out Theta Resolution and Phi Resolution

– Click Apply

Up comes a white sphere

– Click Filters->Alphabetical->Process Id Scalars

– Click Apply

Segments are colored by which process handles

them

Parallel Visualization Algorithms #1:

Task Parallelism

– Divide the overall workflow into tasks that can happen

independently and, hence, concurrently

– Likely does not scale well

– Rendering may itself be parallel

Time

P
ro

c
e
s
s
e
s

Image

Read file 0

Read file 1

Read file 2

Streamline 1

Cutplane 2

Isosurface 0

Render

Parallel Visualization Algorithms #1:

Task Parallelism

• Often does not scale well

– Too few independent paths

– Suppose Isosurface predominates:

Time

P
ro

c
e
s
s
e
s

Image

R.F. 0

R.F. 1

R.F. 2

S.L. 1

C.P. 2

Isosurface 0

Render

Parallel Visualization Algorithms #2:

Data Parallelism

– Data set is partitioned among the processes and all processes

execute same operations on the data.

– Scales well as long as the data and operations can be decomposed.

Image

Time

Read p0

Read p1

Read pn

…

Iso p0

Iso p1

Iso pn

… …

C
o
m

p
o
s
ite

Render

p0

p1

pn

Dataset 0

Similar

for

dataset 1

streamlines

Similar

for

dataset 2

cutplanes

Parallel Visualization Algorithms #2:

Data Parallelism

• Generally scales well if:

– Tasks are amenable to data-parallelism
• Many are (isosurfaces etc.)

• A few just aren’t (streamlines!)

– Work is evenly distributed over partitions

– Alternative is to have >>partitions than processors for load-balancing

• Inter-Partition Boundaries In Distributed Implementations

– Some applications require neighborhood information to get right

answer

– Requires access to data assigned to neighboring partitions (called

ghost zones)

– Overhead increases with number of partitions

Partitioning for Data-Parallelism

Partitioning for Data-Parallelism

Aside: Why Ghost Zones?

• What happens when the incident triangles lie

in different partitions? A discontinuity – and

the eye is designed to pick it up

Performance Issues

• Memory Utilization

• Parallel Data Management

– Supporting parallel compute

– Supporting parallel I/O

• Non-data parallel algorithms

• Parallel rendering overhead

Memory Utilization

• Some visualization techniques cause memory

use to skyrocket!

Memory Utilization

• Regular grids

• Grid and mesh are specified by:

•(xyz) origin

•(dx,dy,dz) delta vectors

•(nx,ny,nz) counts

•Requires diddly-squat memory

Memory Utilization

• Chop off the corner -> Unstructured Grids

• Specified by:

•Explicit list of vertices

•Explicit list of triangles (2D)

•Memory use can go up many

times

Memory Utilization

• Bad solution: Clip volume, extract bundary

Memory Utilization

• Better Solution: extract the boundary and

chop, add in cap

In Paraview

Parallel Data Management

• Data must be distributed across parallel processes to take

advantage of resources

• How does it get there?

– Some PV and VisIt readers import in parallel

• Explicit parallel formats use separate files for partitions (.pvti, global.silo)

• Implicit parallel formats – parallel processes figure out what they need – (.vti,

brick-of-values)

– Some may seem to import in parallel

• Actually, import serially and then distribute

• Bad bad bad – 1 process needs enough memory for entire dataset plus

additional space for partitioning

– And some just don’t

• … and leave it to you (D3 filter in Paraview)

• See Bad bad bad above

TACC Parallel I/O Numbers

Login

Node(s)

…

Lustre

Filesystem

Nodes

(OSS’s)

…

System

nodes

In
te

rc
o

n
n

e
c

t

…

…

…

Number of disks per server:

 - 2 Logical Units (LUNs)

 - 6(+1 redundant) disks/LUN

TACC Parallel I/O Numbers

Login

Node(s)

…

Lustre

Filesystem

Nodes

(OSS’s)

…

System

nodes

In
te

rc
o

n
n

e
c
t

…

…

…

Filesystem Servers (OSS nodes)

 - Spur has 50, SDR IB connect

 - Longhorn 12, QDR IB connect

Lustre File System

• No files are local

– any process can access any file, or any part of a file

• Files are served across network

– Bandwidth into node across interconnect >> bandwidth from

a few local disks

• Multiple pinch-points remain

– Total number of disks (~30-40 MB/sec per disk)

– Total number of file servers (IB connectivity)

• Layout of files becomes important

– File striping across disks in each file server

– File striping across file servers

Luster OSS Striping

• Stripe across >1 OSS node for performance

(and capacity) with diminishing (negative)

returns
– Spur defaults to 4, Longhorn to 2

• Striping is under user control

– lfs getstripe file

• see lmm_stripe_count for current striping

– lfs getstripe dir

• stripe_count will be applied to all files written to that dir

– lfs setstripe dir

• Set the stripe count to apply to all files written to that dir

Finally, Some Things Just Don’t Lend

Themselves To Parallel Execution

• Streamlines!

– Not data-parallel

– Partial streamlines must be passed from

processor to processor as the streamline moves

from partition to partition

– No more parallelism available than the number of

streamlines!

– If >1 streamlines pass through the same partition,

you may not even get that

Rendering

• Got lots of triangles spread out over nodes

• 2 rendering solutions

– 1. Gather triangles onto one node, render there

• Best when there’s not a lot of data to render

– 2. Render triangles in place, gather and

Z-composite the results

• Best when there is a lot of data to render

• Overhead is almost independent of data size

• VisIt and Paraview both do it both ways

– User controls threshold

Summary

• Paraview and VisIt are designed to look the

same whether serial or parallel

• You can’t completely ignore the realities

– Choose your file formats well!

– Consider file system realities!

– Watch out for memory explosion!

