Visualization with ParaView

Greg Johnson
Before we begin...

- Make sure you have ParaView 3.8.0 installed so you can follow along in the lab section
 - http://paraview.org/paraview/resources/software.html
Background

- Open-source, multi-platform parallel data analysis and visualization application
- Mature, feature-rich interface
- Good for general-purpose, rapid visualization
- Built upon the Visualization ToolKit (VTK) library
- Primary contributors:
 - Kitware, Inc.
 - Sandia National Laboratory
 - Los Alamos National Laboratory
 - Army Research Laboratory
Data Types

• Supports a wide variety of data types
 – Structured grids
 • uniform rectilinear, non-uniform rectilinear, and curvilinear
 – Unstructured grids
 – Polygonal data
 – Images
 – Multi-block
 – AMR

• Time series support
Visualization Algorithms

• Supports a wide variety of visualization algorithms
 – Isosurfaces
 – Cutting planes
 – Streamlines
 – Glyphs
 – Volume rendering
 – Clipping
 – Height maps
 – …
Special Features

• Supports derived variables
 – New scalar / vector variables that are functions of existing variables in your data set
• Scriptable via Python
• Saves animations
• Can run in parallel / distributed mode for large data visualization
Data Formats

• Supports a wide variety of data formats
 – VTK (http://www.vtk.org/VTK/img/file-formats.pdf)
 – EnSight
 – Plot3D
 – Various polygonal formats

• Users can write data readers to extend support to other formats

• Conversion to the VTK format is straightforward
Data Formats

- **VTK Simple Legacy Format**
 - ASCII or binary
 - Supports all VTK grid types
 - Easiest for data conversion

- **Note:** use *VTK XML format* for parallel I/O

VTK simple legacy format (http://www.vtk.org/VTK/img/file-formats.pdf)
Data Formatting Example

- Data set: 4x4x4 rectilinear grid with one scalar variable

```vtk
# vtk DataFile Version 2.0
one scalar variable on a rectilinear grid
ASCII
DATASET RECTILINEAR_GRID
DIMENSIONS 4 4 4
X_COORDINATES 4 float
0 1 2.5 4.5
Y_COORDINATES 4 float
0 2 4 6
Z_COORDINATES 4 float
0 3 6 9
POINT_DATA 64
SCALARS scalar_variable float 1
LOOKUP_TABLE default
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 53 54 55 56 57 58
59 60 61 62 63
```
ParaView Visualization Pipeline

- All processing operations (filters) produce data sets
- Can further process the result of every operation to build complex visualizations
 - e.g. can extract a cutting plane, and apply glyphs (i.e. vector arrows) to the result
 - Gives a plane of glyphs through your 3D volume
Demonstration

• WRF weather forecast data set
 – Rectilinear grid
 – Multiple scalar and vector variables
 – Time series

• Can show:
 – Clouds
 – Wind
 – Temperature
 – …
ParaView Test-Drive
Getting Started

• Download example data file ‘RectGrid2.vtk’
 – http://portal.longhorn.tacc.utexas.edu/training/
 – Right-click, Save link as…

• Open ParaView
ParaView

Today we will:

• Create isosurfaces for a scalar variable
• Clip and slice the isosurfaces
• Use glyphs to display a vector field
• Use streamlines to show flow through a vector field
• Edit color maps
• Add slices to show variable values over a plane
• Adjust opacities of filters
• Add color legends
• Create volume rendering
ParaView

Open the file
RectGrid2.vtk

- Click **File** -> **Open**
- **Select** RectGrid2.vtk
- Click **OK**
- Click blue **Apply**
- Box outline of dataset extent displayed
Open the file
 RectGrid2.vtk

- Click File -> Open
- Select RectGrid2.vtk
- Click OK
- Click blue Apply
- Box outline of dataset extent displayed
Open the file
RectGrid2.vtk

- Click File -> Open
- Select RectGrid2.vtk
- Click OK
- Click blue Apply
- Box outline of dataset extent displayed
Create isosurfaces

- **Click** Filters -> Common -> Contour

- In Isosurfaces box, click Delete All

- **Click** New Range

- Keep defaults, click **OK**

- **Click** blue **Apply**

- **Click** Display tab

- In **Color by** box, select vectors
Create isosurfaces

- **Click** Filters -> Common -> Contour
- **In Isosurfaces box, click** Delete All
- **Click** New Range
- Keep defaults, **click** OK
- **Click** blue Apply
- **Click** Display tab
- **In Color by** box, select vectors
ParaView

Create isosurfaces

- Click Filters -> Common -> Contour
- In Isosurfaces box, click Delete All
- Click New Range
- Keep defaults, click OK
- Click blue Apply
- Click Display tab
- In Color by box, select vectors
Create isosurfaces

- Click Filters -> Common -> Contour
- In Isosurfaces box, click Delete All
- Click New Range
- Keep defaults, click OK
- Click blue Apply
- Click Display tab
- In Color by box, select vectors
ParaView

Create isosurfaces

- Click Filters -> Common -> Contour
- In Isosurfaces box, click Delete All
- Click New Range
- Keep defaults, click OK
- Click blue Apply
- Click Display tab
- In Color by box, select vectors
Create isosurfaces

- Click **Filters -> Common -> Contour**
- In **Isosurfaces box**, click **Delete All**
- Click **New Range**
- Keep defaults, click **OK**
- Click **blue Apply**
- Click **Display tab**
- In **Color by box**, select **vectors**
ParaView

Create isosurfaces

- Click **Filters -> Common -> Contour**
- In **Isosurfaces box**, click **Delete All**
- Click **New Range**
- Keep defaults, click **OK**
- Click blue **Apply**
- Click **Display tab**
- In **Color by box**, select **vectors**
ParaView

Clip isosurfaces

- Click \(+Y \) view button
- Click Filters -> Common -> Clip
- Drag arrow point around to front of surface (arrow turns red when selected)
- Click blue Apply
- Click Inside Out checkbox
- Click blue Apply
- Click Show Center button to remove crosshairs
ParaView

Clip isosurfaces

- Click $+Y$ view button
- **Click** Filters -> Common -> Clip
- Drag arrow point around to front of surface (arrow turns red when selected)
- Click blue **Apply**
- Click **Inside Out** checkbox
- Click blue **Apply**
- Click **Show Center** button to remove crosshairs
Clip isosurfaces

- Click +Y view button
- Click Filters -> Common -> Clip
- Drag arrow point around to front of surface (arrow turns red when selected)
- Click blue Apply
- Click Inside Out checkbox
- Click blue Apply
- Click Show Center button to remove crosshairs
ParaView

Clip isosurfaces

- Click +Y view button
- Click Filters -> Common -> Clip
- Drag arrow point around to front of surface (arrow turns red when selected)
- Click blue Apply
- Click Inside Out checkbox
- Click blue Apply
- Click Show Center button to remove crosshairs
ParaView

Clip isosurfaces

- Click \(+Y\) view button
- Click Filters -> Common -> Clip
- Drag arrow point around to front of surface (arrow turns red when selected)
- Click blue Apply
- Click Inside Out checkbox
- Click blue Apply
- Click Show Center button to remove crosshairs
ParaView

Slice isosurfaces

- Click eye next to Clip1 to hide clip plot
- Click Contour1 in Pipeline Browser
- Click Filters -> Common -> Slice
- Drag arrow point around to front of surface (arrow turns red when selected)
- Click blue Apply
ParaView

Slice isosurfaces

- Click eye next to Clip1 to hide clip plot
- **Click Contour1 in Pipeline Browser**
- Click Filters -> Common -> Slice
- Drag arrow point around to front of surface (arrow turns red when selected)
- Click blue Apply
ParaView

Slice isosurfaces

- Click eye next to Clip1 to hide clip plot
- Click Contour1 in Pipeline Browser
- Click Filters -> Common -> Slice
- Drag arrow point around to front of surface (arrow turns red when selected)
- Click blue Apply
ParaView

Slice isosurfaces

- Click eye next to Clip1 to hide clip plot
- Click Contour1 in Pipeline Browser
- Click Filters -> Common -> Slice
- Drag arrow point around to front of surface (arrow turns red when selected)
- Click blue Apply

ParaView 3.8.0 Capture

File Edit View Sources Filters Tools Macros Help

Pipeline Browser

Stream

- Clip1
- Contour1
- Slice1

ParaView Window

Slice Inspector

- Show Plane
 - Origin: -0.541272 0 0.47633228
 - X Normal: 0 1 0
 - Y Normal: 0 0 1
 - Z Normal: 0 0 0
 - Camera Normal: 0 0 0
 - Center on Bounds

Slice Offset Values

- Value Range: [-0.955888, 0.955888]
 - 0
ParaView

Slice isosurfaces

• Click eye next to Clip1 to hide clip plot
• Click Contour1 in Pipeline Browser
• Click Filters -> Common -> Slice
• Drag arrow point around to front of surface (arrow turns red when selected)
• Click blue Apply
ParaView

Slice isosurfaces

- Click eye next to Clip1 to hide clip plot
- Click Contour1 in Pipeline Browser
- Click Filters -> Common -> Slice
- Drag arrow point around to front of surface (arrow turns red when selected)
- Click blue Apply
ParaView

Create Glyph of Vector Field

• **Click** `RectGrid2.vtk` in Pipeline Browser
• **Click** Filters -> Common -> Glyph
• **Click** blue Apply
ParaView

Create Glyph of Vector Field

- **Click** `RectGrid2.vtk` in Pipeline Browser
- **Click** Filters \rightarrow Common \rightarrow Glyph
- **Click** blue Apply
ParaView

Create Glyph of Vector Field

- Click **RectGrid2.vtk** in Pipeline Browser
- Click **Filters -> Common -> Glyph**
- Click **blue Apply**
ParaView

Create Glyph of Vector Field

- Click RectGrid2.vtk in Pipeline Browser
- Click Filters -> Common -> Glyph
- Click blue Apply
ParaView

Create Streamlines

- **Click eye next to Glyph1** to hide glyph plot
- **Click RectGrid2.vtk in Pipeline Browser**
- **Click Filters -> Common -> Stream Tracer**
- **Click blue Apply**
- **Under Display tab, in the Color by box, select Vorticity**
ParaView

Create Streamlines

- Click eye next to **Glyph1** to hide glyph plot
- **Click** *RectGrid2.vtk* in Pipeline Browser
- Click **Filters** -> **Common** -> **Stream Tracer**
- Click **blue** **Apply**
- Under **Display** tab, in the **Color by** box, select **Vorticity**
ParaView

Create Streamlines

- Click eye next to Glyph1 to hide glyph plot
- Click RectGrid2.vtk in Pipeline Browser
- Click Filters -> Common -> Stream Tracer
- Click blue Apply
- Under Display tab, in the Color by box, select Vorticity
ParaView

Create Streamlines

- Click eye next to Glyph1 to hide glyph plot
- Click RectGrid2.vtk in Pipeline Browser
- Click Filters -> Common -> Stream Tracer
- **Click blue Apply**
- Under Display tab, in the Color by box, select Vorticity
ParaView

Create Streamlines

- Click eye next to Glyph1 to hide glyph plot
- Click RectGrid2.vtk in Pipeline Browser
- Click Filters -> Common -> Stream Tracer
- Click blue Apply
- Under Display tab, in the Color by box, select Vorticity
ParaView

Create Streamlines

- Click eye next to Glyph1 to hide glyph plot
- Click RectGrid2.vtk in Pipeline Browser
- Click Filters -> Common -> Stream Tracer
- Click blue Apply
- Under Display tab, in the Color by box, select Vorticity
ParaView

Create Streamlines

• Click eye next to Glyph1 to hide glyph plot
• Click RectGrid2.vtk in Pipeline Browser
• Click Filters -> Common -> Stream Tracer
• Click blue Apply
• Under Display tab, in the Color by box, select Vorticity
ParaView

Create Tubes

- **Click** StreamTracer1 in Pipeline Browser
- **Click** Filters -> Alphabetical -> Tube
- **Click blue Apply**
ParaView

Create Tubes

- **Click** StreamTracer1 in Pipeline Browser
- **Click** Filters -> Alphabetical -> Tube
- **Click** blue Apply
ParaView

Create Tubes

- **Click** StreamTracer1 in Pipeline Browser
- **Click** Filters -> Alphabetical -> Tube
- **Click** blue **Apply**
ParaView

Create Tubes

- Click StreamTracer1 in Pipeline Browser
- Click Filters -> Alphabetical -> Tube
- Click blue Apply
Edit Color Map

- Click Edit Color Map
- Click Choose Preset
- Select BLUE...HSV
- Click blue OK
- Click blue Close
ParaView

Edit Color Map

- Click Edit Color Map
- **Click** Choose Preset
- **Select** BLUE...HSV
- Click blue OK
- Click blue Close
Edit Color Map

- **Click** Edit Color Map
- **Click** Choose Preset
- **Select** BLUE...HSV
- **Click** blue OK
- **Click** blue Close
ParaView

Edit Color Map

- Click Edit Color Map
- Click Choose Preset
- Select `BLUE...HSV`
- Click blue OK
- Click blue Close
ParaView

Edit Color Map

• Click Edit Color Map
• Click Choose Preset
• Select BLUE...HSV
• Click blue OK
• Click blue Close
ParaView

Edit Color Map

- Click Edit Color Map
- Click Choose Preset
- Select BLUE...HSV
- Click blue OK
- Click blue Close
ParaView

Create Slice

- **Click** `RectGrid2.vtk` in Pipeline Browser
- **Click** Filters -> Common -> Slice
- Drag arrow point around to front of surface (arrow turns red when selected)
- Or click Y Normal
- **Click** blue Apply
- **Click** Show Plane
ParaView

Create Slice

- **Click** `RectGrid2.vtk` in Pipeline Browser
- **Click** Filters -> Common -> Slice
- **Drag arrow point around to front of surface (arrow turns red when selected)**
- **Or click Y Normal**
- **Click blue Apply**
- **Click Show Plane**
ParaView

Create Slice

- **Click** `RectGrid2.vtk` in Pipeline Browser
- **Click** Filters -> Common -> Slice
- Drag arrow point around to front of surface (arrow turns red when selected)
- Or **click** Y Normal
- **Click** blue **Apply**
- **Click** Show Plane
ParaView

Create Slice

- **Click** `RectGrid2.vtk` in Pipeline Browser
- **Click** Filters -> Common -> Slice
- Drag arrow point around to front of surface (arrow turns red when selected)
- Or **click** Y Normal
- **Click** blue Apply
- **Click** Show Plane
ParaView

Create Slice

- **Click** `RectGrid2.vtk` in Pipeline Browser
- **Click** Filters -> Common -> Slice
- Drag arrow point around to front of surface (arrow turns red when selected)
- Or click **Y Normal**
- **Click** blue **Apply**
- **Click** Show Plane
ParaView

Background Color

• **Click the button above the 3D view**
• **Click Choose Color**
• **Drag box to black**
• **Click blue** Ok
• **Click blue** Ok
ParaView

Background Color

- Click the button above the 3D view
- **Click** Choose Color
- Drag box to black
- Click blue **Ok**
- Click blue **Ok**
ParaView

Background Color

- Click the button above the 3D view
- Click Choose Color
- Drag box to black
- Click blue Ok
- Click blue Ok
ParaView

Background Color

- Click the button above the 3D view
- Click Choose Color
- Drag box to black
- Click blue Ok
- Click blue Ok
ParaView

Background Color

- Click the button above the 3D view
- Click Choose Color
- Drag box to black
- Click blue Ok
- Click blue Ok
ParaView

Object Opacity

• **Click Slice2** in Pipeline Browser
• **Click Display**
• **Change Opacity to 0.70** → Enter
• **Click Color by vectors**
• **Click eye next to RectGrid2.vtk to hide box outline**
Object Opacity

- Click **Slice2** in Pipeline Browser
- Click **Display**
- **Change** Opacity to 0.70 → Enter
- Click **Color by vectors**
- Click eye next to **RectGrid2.vtk** to hide box outline
ParaView

Object Opacity

- Click **Slice2** in Pipeline Browser
- Click **Display**
- Change **Opacity to 0.70** → Enter
- Click **Color by vectors**
- Click eye next to **RectGrid2.vtk** to hide box outline
ParaView

Object Opacity

- Click **Slice2** in Pipeline Browser
- Click **Display**
- Change **Opacity** to 0.70 → Enter
- Click **Color by vectors**
- Click eye next to **RectGrid2.vtk** to hide box outline
Object Opacity

- Click **Slice2** in Pipeline Browser
- Click **Display**
- Change **Opacity to 0.70** -> Enter
- Click **Color by vectors**
- Click eye next to **RectGrid2.vtk** to hide box outline
ParaView

Enable Color Legend

- **Click** Display
- **Click** Edit Color Map
- **Click** Color Legend
- **Click** Show Color Legend
- **Click** -> Blue Close
- **Select** Color Legend (notice white rectangle) and move to top of 3D viewer
ParaView

Enable Color Legend
- **Click** Display
- **Click** Edit Color Map
- **Click** Color Legend
- **Click** Show Color Legend
- **Click** -> Blue Close
- Select Color Legend (notice white rectangle) and move to top of 3D viewer
ParaView

Enable Color Legend

- **Click** Display
- **Click** Edit Color Map
- **Click** Color Legend
- **Click** Show Color Legend
- **Click** -> Blue Close
- Select Color Legend (notice white rectangle) and move to top of 3D viewer
ParaView

Enable Color Legend

• Click Display
• Click Edit Color Map
• Click Color Legend
• Click Show Color Legend
• Click -> Blue Close
• Select Color Legend (notice white rectangle) and move to top of 3D viewer
ParaView

Enable Color Legend

- Click **Display**
- Click **Edit Color Map**
- Click **Color Legend**
- Click **Show Color Legend**
- Click -> Blue Close
- Select Color Legend (notice white rectangle) and move to top of 3D viewer
ParaView

Create Volume Rendering

- **Click** `RectGrid2.vtk` in Pipeline Browser
- **Click** Filters -> Common -> Tetrahedralize
- **Click** -> Apply
- **Click** Display
- **Click** Representation
- **Select** Volume
- **Click** -> Edit Color Map (To edit transfer function)
ParaView

Create Volume Rendering

- **Click** RectGrid2.vtk in Pipeline Browser
- **Click** Filters -> Common -> Tetrahedralize
- **Click** -> Apply
- **Click** Display
- **Click** Representation
- **Select** Volume
- **Click** -> Edit Color Map (To edit transfer function)
ParaView

Create Volume Rendering

- Click `RectGrid2.vtk` in Pipeline Browser
- Click `Filters` -> `Common` -> `Tetrahedralize`
- Click -> `Apply`
- Click `Display`
- Click `Representation`
- Select `Volume`
- Click -> `Edit Color Map` (To edit transfer function)
ParaView

Create Volume Rendering

- **Click** `RectGrid2.vtk` in Pipeline Browser
- **Click** Filters -> Common -> Tetrahedralize
- **Click** -> Apply
- **Click** Display
- **Click** Representation
- **Select** Volume
- **Click** -> Edit Color Map (To edit transfer function)
ParaView

Create Volume Rendering

- **Click** RectGrid2.vtk in Pipeline Browser
- **Click** Filters -> Common -> Tetrahedralize
- **Click** -> Apply
- **Click** Display
- **Click** Representation
- **Select** Volume
- **Click** -> Edit Color Map (to edit transfer function)
Questions?

• More tutorials available: