
Programming OpenMP 

Susan Mehringer 

Cornell Center for Advanced Computing 

Based on materials developed at CAC and TACC 



5/24/2011 www.cac.cornell.edu 2 

Overview 

• Parallel processing 

– MPP vs. SMP platforms MPP = Massively Parallel Processing      

– Motivations for parallelization SMP = Symmetric MultiProcessing 

• What is OpenMP? 

• How does OpenMP work? 

– Architecture 

– Fork-join model of parallelism 

– Communication 

• OpenMP constructs 

– Directives 

– Runtime Library API 

– Environment variables 



5/24/2011 www.cac.cornell.edu 3 

MPP platforms 

Local Memory 

Interconnect 

Processors 

• Clusters are distributed memory platforms in which each processor 

has its own local memory; use MPI on these systems. 

… 

… 

… 



5/24/2011 www.cac.cornell.edu 4 

SMP platforms 

• In each Ranger node, the 16 cores share access to a common pool 

of memory; likewise for the 8 cores in each node of CAC’s v4 cluster 

 

Shared 

Memory 

Banks 

Memory 

Interface 

Processors 
… 

… 



5/24/2011 www.cac.cornell.edu 5 

What is OpenMP? 

 

• De facto open standard for scientific parallel programming 
on Symmetric MultiProcessor (SMP) systems 

– Allows fine-grained (e.g., loop-level) and coarse-grained parallelization 

– Can express both data and task parallelism 

• Implemented by: 

–  Compiler directives 

–  Runtime library (an API, Application Program Interface) 

–  Environment variables 

• Standard specifies Fortran and C/C++ directives and API 

• Runs on many different SMP platforms 

• Find tutorials and description at http://www.openmp.org/  

http://www.openmp.org/


5/24/2011 www.cac.cornell.edu 6 

Advantages/disadvantages of OpenMP 

• Pros 

– Shared Memory Parallelism is easier to learn 

– Parallelization can be incremental  

– Coarse-grained or fine-grained parallelism 

– Widely available, portable 

• Cons 

– Scalability limited by memory architecture 

– Available on SMP systems only 

 

• Benefits 

 Helps prevent CPUs from going idle on multi-core machines 

 Enables faster processing of large-memory jobs 



5/24/2011 www.cac.cornell.edu 7 

Threads in operating system 

OpenMP architecture 

Application User 

Runtime library 

Compiler directives Environment variables 



5/24/2011 www.cac.cornell.edu 8 

OpenMP fork-join parallelism 

• Parallel regions are basic “blocks” within code 

• A master thread is instantiated at run time and persists throughout 

execution 

• The master thread assembles teams of threads at parallel regions 

 

master thread 

parallel region parallel region parallel region 



5/24/2011 www.cac.cornell.edu 9 

How do threads communicate? 

• Every thread has access to “global” memory (shared) and its own 

stack memory (private) 

 

• Use shared memory to communicate between threads 

 

• Simultaneous updates to shared memory can create a race 

condition: the results change with different thread scheduling 

 

• Use mutual exclusion to avoid race conditions 

– But understand that “mutex” serializes performance wherever it is used 

– By definition only one thread at a time can execute that section of code 



5/24/2011 www.cac.cornell.edu 10 

OpenMP constructs 

OpenMP language  

extensions 

parallel control 

structures 

data  

environment 

synchron- 

ization 

• governs flow of  

control in the  

program 

 
 

parallel directive 

 

• specifies 

variables as  

shared or private 

 
shared and  

private 

clauses 

• coordinates 

thread execution 

 

 
critical and  

atomic directives 

barrier directive 

work sharing 

• distributes work  

among threads 

 
 

do/parallel do  

and section 

directives 

runtime functions,  

environment 

variables 

• sets runtime environment 

 

  
omp_set_num_threads() 

omp_get_thread_num() 

OMP_NUM_THREADS 

OMP_SCHEDULE 



5/24/2011 www.cac.cornell.edu 11 

OpenMP directives 

• OpenMP directives are comments in source code that specify 

parallelism for shared-memory (SMP) machines 

• FORTRAN compiler directives begin with one of the sentinels 
!$OMP, C$OMP, or *$OMP – use !$OMP for free-format F90 

• C/C++ compiler directives begin with the sentinel  #pragma omp 

!$OMP parallel 

  ... 

!$OMP end parallel 

 

!$OMP parallel do 

  DO ... 

!$OMP end parallel do 

# pragma omp parallel 

     {...} 

 

 

# pragma omp parallel 

for 

    for(...){...} 

Fortran C/C++ 



5/24/2011 www.cac.cornell.edu 12 

Directives and clauses 

 

• Parallel regions are marked by the parallel directive 

• Work-sharing loops are marked by 

–  parallel do directive in Fortran 

–  parallel for directive in C 

• Clauses control the behavior of a particular OpenMP directive 

1. Data scoping (Private, Shared, Default) 

2. Schedule (Guided, Static, Dynamic, etc.) 

3. Initialization (e.g., COPYIN, FIRSTPRIVATE) 

4. Whether to parallelize a region or not (if-clause) 

5. Number of threads used (NUM_THREADS) 

 



5/24/2011 www.cac.cornell.edu 13 

Parallel region and work sharing 

Use OpenMP directives to specify Parallel Region and 

Work Sharing constructs 

Parallel  

 

 

 

End Parallel 

Code block Each Thread Executes: 

DO      Work Sharing 

SECTIONS Work Sharing 

SINGLE One Thread 

CRITICAL One Thread at a Time 

Parallel DO/for 

Parallel SECTIONS 

Stand-alone 

parallel constructs 



5/24/2011 www.cac.cornell.edu 15 

1  !$OMP PARALLEL 

2       code block 

3       call work(...) 

4  !$OMP END PARALLEL 

 

 

Line 1 Team of threads is formed at parallel region 

Lines 2-3 Each thread executes code block and subroutine call, 

no branching into or out of a parallel region 

Line 4 All threads synchronize at end of parallel region 

(implied barrier) 
 

Parallel regions 



5/24/2011 www.cac.cornell.edu 16 

Parallel Work (linear scaling)

Lab Example 1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

CPUs

S
p

e
e

d
u

p

Parallel Work (Times)

Lab Example 1

0.00

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6

CPUs

T
im

e
 (

se
c
.)

If work is completely 

parallel, scaling is linear 

Speedup =  

cputime(1) / cputime(N) 

Parallel work example 



5/24/2011 www.cac.cornell.edu 17 

1 !$OMP PARALLEL DO 

2        do i=1,N 

3           a(i) = b(i) + c(i)  !not much work 

4        enddo 

5 !$OMP END PARALLEL DO 

 

Line 1 Team of threads is formed at parallel region 

Lines 2-4 Loop iterations are split among threads, each loop 

iteration must be independent of other iterations 

Line 5 (Optional) end of parallel loop (implied barrier at 

enddo) 

 
 

Work sharing 



5/24/2011 www.cac.cornell.edu 18 

Scheduling, memory 

contention and overhead 

can impact speedup 

Speedup =  

cputime(1) / cputime(N) 

Work-sharing example 

Work-Sharing on Production System

Lab Example 2

0

2

4

6

8

10

0 2 4 6 8

Threads

S
p

e
e

d
u

p

Series1

Series2

Work-Sharing on Production System

(Lab Example 2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9

CPUs

T
im

e
 (

s
e

c
.)

Actual 

Ideal 



5/24/2011 www.cac.cornell.edu 19 

Overhead for Parallel Team (-O3, -qarch/tune=pwr4)

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20

Threads

C
lo

c
k
 P

e
ri

o
d

s
 (

1
.3

G
H

z
 P

6
9
0
)

parallel

parallel_do

Example from Champion (IBM system) 

Team overhead 

• Increases roughly linearly with number of threads 



5/24/2011 www.cac.cornell.edu 20 

• Replicated      : executed by all threads 

• Work sharing : divided among threads 

PARALLEL 

  {code} 

END PARALLEL 

PARALLEL DO 

  do I = 1,N*4 

    {code} 

  end do 

END PARALLEL DO 

PARALLEL 

    {code1} 

DO 

  do I = 1,N*4 

    {code2} 

  end do 

    {code3} 

END PARALLEL 

code code code code 
I=N+1,2N 

 code 
I=2N+1,3N 

  code 

I=3N+1,4N 

  code 

I=1,N 

 code 

code1 code1 code1 code1 

I=N+1,2N 

 code2 
I=2N+1,3N 

  code2 

I=3N+1,4N 

  code2 

I=1,N 

 code2 

code3 code3 code3 code3 

Work sharing Combined 

OpenMP parallel constructs 

Replicated 



5/24/2011 www.cac.cornell.edu 21 

The !$OMP PARALLEL directive declares an entire region as parallel; 

therefore, merging work-sharing constructs into a single parallel region 

eliminates the overhead of separate team formations 

!$OMP PARALLEL 

  !$OMP DO 

      do i=1,n         

 a(i)=b(i)+c(i) 

      enddo 

  !$OMP END DO 

  !$OMP DO 

      do i=1,m         

   x(i)=y(i)+z(i) 

      enddo 

  !$OMP END DO 

!$OMP END PARALLEL 

!$OMP PARALLEL DO 

      do i=1,n 

         a(i)=b(i)+c(i) 

      enddo 

!$OMP END PARALLEL DO 

!$OMP PARALLEL DO 

      do i=1,m 

         x(i)=y(i)+z(i) 

      enddo 

!$OMP END PARALLEL DO 

Merging parallel regions 



5/24/2011 www.cac.cornell.edu 22 

Distribution of work: SCHEDULE clause 

• !$OMP PARALLEL DO SCHEDULE(STATIC) 

– Default schedule: each CPU receives one set of contiguous iterations      

– Size of set is ~ (total_no_iterations /no_of_cpus) 

• !$OMP PARALLEL DO SCHEDULE(STATIC,N) 

– Iterations are divided round-robin fashion in chunks of size N  

• !$OMP PARALLEL DO SCHEDULE(DYNAMIC,N) 

– Iterations handed out in chunks of size N as threads become available 

• !$OMP PARALLEL DO SCHEDULE(GUIDED,N) 

– Iterations handed out in pieces of exponentially decreasing size  

– N = minimum number of iterations to dispatch each time (default is 1) 

– Can be useful for load balancing (“fill in the cracks”) 

 



5/24/2011 www.cac.cornell.edu 23 

OpenMP data scoping 

• Data-scoping clauses control how variables are shared within a 

parallel construct 

• These include the shared, private, firstprivate, 

lastprivate, reduction clauses 

• Default variable scope: 

– Variables are shared by default 

– Global variables are shared by default 

– Automatic variables within a subroutine that is called from inside a 

parallel region are private (reside on a stack private to each thread), 

unless scoped otherwise 

– Default scoping rule can be changed with default clause 

 



5/24/2011 www.cac.cornell.edu 24 

PRIVATE and SHARED data 

• SHARED -  Variable is shared (seen) by all processors 

• PRIVATE -  Each thread has a private instance (copy) of the 

variable 

• Defaults: loop indices are private, other variables are shared 
 

  !$OMP PARALLEL DO 

        do i=1,N 

           A(i) = B(i) + C(i) 

        enddo 

  !$OMP END PARALLEL DO 

 

• All threads have access to the same storage areas for A, B, C, and 

N, but each loop has its own private copy of the loop index, i. 



5/24/2011 www.cac.cornell.edu 25 

PRIVATE data example 

• In the following loop, each thread needs a PRIVATE copy of temp 

– The result would be unpredictable if temp were shared, because each 

processor would be writing and reading to/from the same location 

 
  !$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(temp,i) 

        do i=1,N 

           temp = A(i)/B(i) 

           C(i) = temp + cos(temp) 

        enddo 

  !$OMP END PARALLEL DO 

 

– A “lastprivate(temp)” clause will copy the last loop (stack) value of temp 

to the (global) temp storage when the parallel DO is complete 

– A “firstprivate(temp)” initializes each thread’s temp to the global value 



5/24/2011 www.cac.cornell.edu 26 

REDUCTION 

• An operation that “combines” multiple elements to form a single 

result, such as a summation, is called a reduction operation 
 

  !$OMP PARALLEL DO REDUCTION(+:asum) REDUCTION(*:aprod) 

        do i=1,N 

           asum  = asum  + a(i) 

           aprod = aprod * a(i) 

        enddo 

  !$OMP END PARALLEL DO 

 

– Each thread has a private ASUM and APROD (declared as real*8, e.g.), 

initialized to the operator’s identity, 0 & 1, respectively 

– After the loop execution, the master thread collects the private values of 

each thread and finishes the (global) reduction 



5/24/2011 www.cac.cornell.edu 27 

• When a work-sharing 

region is exited, a barrier 

is implied – all threads 

must reach the barrier 

before any can proceed 

 

• By using the NOWAIT 

clause at the end of each 

loop inside the parallel 

region, an unnecessary 

synchronization of threads 

can be avoided 

!$OMP PARALLEL 

!$OMP DO 

      do i=1,n 

         work(i) 

      enddo 

!$OMP END DO NOWAIT 

!$OMP DO schedule(dynamic,M) 

      do i=1,m 

         x(i)=y(i)+z(i) 

      enddo 

!$OMP END 

!$OMP END PARALLEL  

NOWAIT 



5/24/2011 www.cac.cornell.edu 28 

!$OMP PARALLEL SHARED(sum,X,Y) 

 ... 

!$OMP CRITICAL  

   call update(x) 

   call update(y) 

   sum=sum+1 

!$OMP END CRITICAL 

... 

!$OMP END PARALLEL 

!$OMP PARALLEL SHARED(X,Y) 

 ... 

!$OMP ATOMIC 

      sum=sum+1 

... 

!$OMP END PARALLEL 

Mutual exclusion: atomic and critical directives 

• When threads must execute a section of code serially (only one 

thread at a time can execute it), the region must be marked with 

CRITICAL / END CRITICAL directives 

• Use the “!$OMP ATOMIC” directive if executing only one operation 



5/24/2011 www.cac.cornell.edu 29 

call OMP_INIT_LOCK(maxlock) 

!$OMP PARALLEL SHARED(X,Y) 

... 

call OMP_set_lock(maxlock) 

call update(x) 

call OMP_unset_lock(maxlock) 

... 

!$OMP END PARALLEL 

call OMP_DESTROY_LOCK(maxlock) 

Mutual exclusion: lock routines 

• When each thread must execute a section of code serially (only one 

thread at a time can execute it), locks provide a more flexible way of 

ensuring serial access than CRITICAL and ATOMIC directives 

 
 



5/24/2011 www.cac.cornell.edu 30 

Open MP exclusion routine/directive cycles 

OMP_SET_LOCK/OMP_UNSET_LOCK 330 

OMP_ATOMIC 480 

OMP_CRITICAL 510 

All measurements were made in dedicated mode 

Overhead associated with mutual exclusion 



5/24/2011 www.cac.cornell.edu 31 

omp_get_num_threads() Number of threads in current team 

omp_get_thread_num() 

 

Thread ID, {0: N-1} 

 

omp_get_max_threads() Number of threads in environment 

omp_get_num_procs() Number of machine CPUs 

omp_in_parallel() 

 

True if in parallel region & multiple threads 

executing 

omp_set_num_threads(#) Changes number of threads for parallel region 

Runtime library functions 



5/24/2011 www.cac.cornell.edu 32 

omp_set_dynamic() Set state of dynamic threading (true/false) 

omp_get_dynamic() True if dynamic threading is on 

 

OMP_NUM_THREADS Set to permitted number of threads 

OMP_DYNAMIC TRUE/FALSE for enable/disable dynamic threading 

More functions and variables 

• To enable dynamic thread count (not dynamic scheduling!) 

 

 

 

 

 

• To control the OpenMP runtime environment 

 
 



5/24/2011 www.cac.cornell.edu 33 

OpenMP 2.0/2.5: what’s new? 

• Wallclock timers 

• Workshare directive (Fortran 90/95) 

• Reduction on array variables 

• NUM_THREAD clause 

 

 

• Minor release; will not break existing, correct OpenMP applications 

• New features: 

• Adding predefined min and max operators for C and C++ 

• extensions to the atomic construct that allow the value of the shared variable 

that the construct updates to be captured or written without being read 

• extensions to the OpenMP tasking model that support optimization of its use. 

 

OpenMP 3.1: expected release 2011 



5/24/2011 www.cac.cornell.edu 34 

OpenMP wallclock timers 

Real*8 :: omp_get_wtime, omp_get_wtick()    (Fortran) 

double omp_get_wtime(), omp_get_wtick();    (C) 

   double t0, t1, dt, res; 

   ... 

   t0=omp_get_wtime(); 

   <work> 

   t1=omp_get_wtime(); 

   dt=t1-t0; res=1.0/omp_get_wtick(); 

   printf(“Elapsed time = %lf\n”,dt); 

   printf(“clock resolution = %lf\n”,res); 



5/24/2011 www.cac.cornell.edu 35 

References 

• Current standard 

– http://www.openmp.org/ 

 

• Books 

– Parallel Programming in OpenMP, by Chandra,Dagum, Kohr, Maydan, 

McDonald, Menon 

– Using OpenMP, by Chapman, Jost, Van der Pas (OpenMP 2.5) 

 

• Virtual Workshop Module 

– https://www.cac.cornell.edu/Ranger/OpenMP/ 

http://www.openmp.org/
https://www.cac.cornell.edu/Ranger/OpenMP/

