
Cornell Log Analysis and Monitoring Project

(CLAMP)
Michael D. Padula

Cornell University
Center for Advanced Computing

Ithaca, NY 14853
(607) 254-8733

Mdp15@cornell.edu

Lucia M. Walle
Cornell University

Center for Advanced Computing
Ithaca, NY 14853
(607) 254-8775

Lmw25@cornell.edu

ABSTRACT

The goal of this project was to determine if a real-time event

monitoring process could enable the prediction or prevention of

system failures in a complex system such as the Texas Advanced

Computing Center’s (TACC) Ranger compute cluster. The

development process involved numerous research steps including

system log collection and manipulation and the development, use

and testing of multiple tools to analyze or display the log

information in a meaningful way assuming that historical events

are useful for future predictions. This paper includes information

about related work, implementation details about the tools used,

their purpose and limitations, an evaluation of the work,

achievements, and proposed future work. Over the course of this

project we were able to predict known events and minimize

outages in various scenarios involving multiple distributed

systems and subsystems.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – Information filtering, Query formulation,

Selection process.

General Terms

Management, Reliability, Experimentation.

Keywords

Realtime, log, monitoring, analysis, improve, reliability,

prediction, event

1. INTRODUCTION
The goal of this project was to determine if a real-time event

monitoring process could enable the prediction or prevention of

system failures in a complex system such as TACC’s Ranger

compute cluster. On today’s growing petascale computing systems

the volume of log data that is produced typically exceeds many

millions of lines of information every day from multiple sources

(e.g., parallel file systems, networking equipment, and computer

hardware) that make up the overall system. Human beings cannot

read or analyze the extreme volume of log data fast enough to

predict or prevent failures, much less to find the root cause of a

problem that has already occurred. In order to maintain a

reasonable level of availability and reliability, system

administrators require software tools that can alert them to

emerging conditions and errors and, in some cases, take

preventative action.

Previous efforts have centered on a fully automated approach to

predicting events. After reviewing this work, referenced in the

subsequent section on Related Work, and noting inherent

limitations in such fully automated approaches, our approach is

unique in recognizing that some log files lack sufficient

information to automatically predict failures. For example, syslog

files from Ranger lack a proper date thereby imposing limits on

any analysis or real-time monitoring. Additionally, some repeating

events are logged as aggregates. More specifically, if an event

occurs every second for 90 seconds one message will be logged

stating that “the previous message was logged 90 times” without

providing the actual message and without a reproducible timeline.

We found that by including historical log analysis and

institutional knowledge of the systems provided by TACC staff,

we were able to minimize the limitations imposed by the

inconsistent and sometimes spotty event logging and improve our

ability to detect and prevent known conditions.

Our implementation included a set of tools, some purpose-built

and others long in wide-spread use, used to visually represent log

file activity, monitor log files in real time, discover potentially

important or unique words, and generate a set of statistics from a

given log file. Each of these tools, their purpose, and limitations

are discussed in the subsequent Implementation section. The

remainder of the paper includes a discussion of our evaluation of

the work, specific achievements, and potential future work.

2. RELATED WORK
Many researchers and practitioners have addressed the issue of

event log monitoring and analysis. There are numerous papers and

tools available. Risto Vaarandi [1] has published numerous papers

on event correlation and tools used for analysis. LogHound is

incorporated in Sisyphus [2] which we installed, configured, and

utilized. Jon Stearley [3] of Sandia National Laboratories who

provides the Sisyphus toolkit has also written many papers and

tools for log analysis. As computer systems change and evolve

over time, so do analysis techniques. By appropriately utilizing

these toolsets, gaining necessary insight, we investigated and

created a process to effectively analyze and monitor log files from

a wide variety of sources.

3. IMPLEMENTATION
Our implementation process evolved over time with numerous

types of investigations. We will explain in this section the tools

we used or created. Briefly, this includes data collection and

manipulation, the creation of a log activity graph, implementing

tools such as Cayuga [4] and Sisyphus, creating graphs in

Microsoft Excel, looking at tacc_stats, and evaluating SQLstream.

Much of the legwork took place in parallel and this does not

represent a sequential process through which data moves, but

rather, a set of tools we employed to discover needed information

about the logs. We also needed to learn more about the computer

systems on which the events take place. While “High Performance

Computing” can mean many things, we had to learn about the

components that made up a particular supercomputer and

understand the working relationship among these.

We began by collecting data from the logs generated by Ranger

(http://www.tacc.utexas.edu/resources/hpc/#constellation) at

TACC. Each week the system administrators at TACC sent us a

list of newly created files. Five log types were made available to

the Cornell University Center for Advanced Computing (CAC)

from TACC and copied via Globus Online

(https://www.globusonline.org) including syslogs, node cluster

status, OSM or IB switch, job scheduler, and resource manager

logs. We chose to download these via a manual process, rather

than an automated one, in order to speed up our progress to the

next steps in the project. In order to automate this step we would

need TACC to provide us the means to poll for a list of log files

on disk and their locations and develop the ability to reconcile

that list against what had already been processed. Developing that

ability would necessitate database development and programming

to track files and their state in the pipeline or to implement a

solution that provided the same capability. This would have been

a substantial amount of work which was peripheral to the goals of

the project. The work would have included significant effort from

TACC and CAC staff. We opted instead to leverage the automated

data processing and loading steps by simply reloading data when

errors (missing or duplicate data) were encountered. In all, our

database held nearly three years of logs from Ranger. An early

challenge was gaining sufficient understanding of the log formats

and making the content of each log suitable for entry into a

relational database. For instance, one log contains a date entry

without a year. With an understanding of the structure of each of

the logs drawn from institutional knowledge at TACC and

research at CAC, we were able to devise processes to shape the

data in the manner necessary. With the initial data transformation

phase complete, Ranger logs were then inserted in the log

repository. This process was done using SQL Server Integration

Services (SSIS). One particularly useful feature of an SSIS

package is the data validation that can be embedded in the

integration package. This prevents partial data inserts and

disallows the insertion of erroneous data without relying

exclusively on the database server to perform the validation. SSIS

packages are also simple to automate and can be paired with the

early data manipulation for a one click process capable of

processing and inserting any number of log entries and log files.

While analyzing the data we found that somehow duplicate data

had been read in. The data then had to be reloaded implementing

new steps to verify no duplicate data would be loaded into the

database in the future. This duplicate data appears to be an

unavoidable attribute of log file aggregation at present. This is

part of the processes we are not involved in and unable to affect

but it appears that during these steps the same log entries are

getting placed in multiple log files resulting in duplicate data in a

very small number of cases.

3.1 TOOLS INVESTIGATED

3.1.1 Log Activity Graph
The log activity graph was developed by CAC to assist with the

initial analysis of the event logs by searching for patterns to

identify failures, outages, and other potentially unknown

conditions. This web-based tool allows an interested party to

visually identify areas of potential interest in event logs based on

the number of events logged over time. Having identified an area

or areas of interest, further examination and analysis can be

focused more effectively on a smaller subset of data. All event log

entries in the repository share some common schema elements

which allow this tool to identify points of interest in any of the log

formats available. The data being used to generate the display can

be exported in multiple formats for custom analysis or

visualization. The raw data is not made accessible through this

tool. Testing with this Adobe Flash-based tool revealed that using

more than 2000 data points to generate the graph yielded

unacceptable performance where as any given time span may

contain millions of data points. Code was added to the database to

‘bin’ the data from a selected time span into 2000 data points.

This yields good performance and protects the potentially

sensitive underlying data while still making the results accessible

for further study and analysis. For CAC staff working with this

tool, it was the first step in identifying sections of the log file

containing tens and hundreds of thousands of consecutive login

failures.

3.1.2 Cayuga
Cayuga (http://www.cs.cornell.edu/bigreddata/cayuga/) is a

stateful publish/subscribe application that can be used for an event

monitoring framework and a variety of different types of events.

Cayuga can accept data from files or streams. Stream processing

makes it possible for software applications to access the log files

as fast as they are written. For any hope of real-time event

monitoring the capability of streaming is very important. Using

files we can fine tune the monitoring of the logs and replay them

for testing and evaluation.

As with all software applications there are some learning curves in

setting up the application and utilizing it. CAC set up a Cayuga

server and developed a client to read data from the SQL database

and send it to Cayuga over a socket. All traffic was internal to

CAC subnets within Cornell. Cayuga uses its own query language

(Cayuga Event Language) to gather specified information as it

comes through the socket. We set up some simple queries for

testing. During testing the system processed more than one

million records in about eight minutes. We then discovered that

we needed to know more information about the actual data to

make better queries and alerts for recognizing possible scenarios

which would help alert a system administrator to an impending

problem. The Cayuga download is available at

http://sourceforge.net/projects/cayuga/.

3.1.3 Sisyphus
Sisyphus (http://www.cs.sandia.gov/~jrstear/sisyphus/) is a log

file data mining toolkit that can be used with live data as it is

generated and collected in the log files or it can be used on

historical data. This tool gives color-coded information based on

word counts which is helpful in analyzing large datasets of log

files. This tool requires the datasets in original syslog form, so it

will only work on one years’ worth of data as the year is not kept

in the syslog log files. We separated the logs by year and system

type, in this case, fileservers, logins nodes, and compute nodes to

help gain a greater focus in our analysis. With this tool a user can

look at specific time slices of data. We started by looking at

unplanned down times in the historical data. The down times

needed to be gathered manually from the TeraGrid web site as

they were not specifically designated in any of the data we had

access to where the log files were downloaded. Sisyphus also

helps to identify the most (and least) unique words and phrases in

files or areas of files. This is one of Sisyphus’ most attractive

features as both types of areas may be of interest in the context of

log file analysis.

3.1.4 Generated Graphs
CAC developed a Windows PowerShell script

(http://technet.microsoft.com/en-us/library/bb978526.aspx) to pull

data from the database into Microsoft Excel so that graphs could

be generated by counting the events from the different types of

systems. When looking for patterns it is helpful to look at the data

in different ways or time slices. The script is set up to ask for a

start date, end date and increment number or bin size. We then

looked at multiple graphs to see if there are any indicators for the

frequency of events on different systems. For instance, utilizing

these graphs we can easily see to what degree, relative to each

other, the fileservers and compute nodes’ logging patterns change

and, consequently, discern a normal pattern of events from an

abnormal pattern. We generated numerous graphs and used the

information as input into other tools like Sisyphus to get a look at

word counts and messages around various unexpected outages to

see if we could find a trigger for these unexpected events.

Unfortunately a trigger was not found in the logs that we

evaluated.

3.1.5 tacc_stats
Tacc_stats (https://github.com/TACCProjects/tacc_stats) is a job-

orientated system performance monitor. We were interested in the

data this tool produces in the context of the potential to discover

correlations between log file activity or specific logging

conditions and a wide range of performance statistics including

memory use, CPU utilization, and I/O statistics. Several days of

tacc_stats output files were copied to CAC for this purpose. A

procedure to put the data into a format suitable for a relational

database was devised and the data was processed and reorganized

using CAC’s compute cluster in an embarrassingly parallel job

which used tacc_stats output files as input and yielded the same

statistics in a format suitable to easily and quickly place into a

relational database for analysis. The data was placed into a simple

relational database and a series of queries devised to generate

basic information that described various performance attributes of

jobs which started, ran, or finished in the period of time

represented in our sample.

3.1.6 SQLstream
SQLstream (http://www.sqlstream.com/) is a tool much like

Cayuga in that one can query data through time whether it be live

or historical. However, the formats of the queries are composed

using standard SQL, not a proprietary language. Since this is a

commercial product, support is available if users have questions

or need assistance. CAC set up SQLstream and used it with the

historical data from TACC. We played back the TACC data and

monitored specifically for client eviction events in the Lustre file

system occurring more than three times in five minutes across

multiple servers. This enabled us to take corrective action when

the specified condition was met or to notify system operators. We

also recorded client eviction events in Ganglia. Since Ganglia is a

widely used tool to monitor systems, integrating the results from

SQLstream can give an administrator an overall system health

status and respond to emerging circumstances. CAC also set up a

SQLstream monitor on a Linux login node monitoring the security

log. Using SQLstream we monitored for more than five failed

login attempts within 5 minutes from the same IP address. When

that condition was met, a python script was used to block that

address for 30 minutes.

4. EVALUATION
Using the set of tools in section 3.1, we experimented with

multiple streams of data as well as high frequency points in time.

Our non-algorithmic approach is to identify a point or period in

time that has a high frequency of events and then look at the data

just previous to this time and see if it is indicative of a failure of

service or hardware. We separated the syslog events by system

type, compute nodes, login nodes, or file systems, for analysis

using the Sisyphus toolkit. Each system type produces different

types of events. We wanted to look at each system type

individually to see if we could narrow down keywords or phrases

that would indicate some type of issue. We talked to other system

administrators asking for known events that cause problems. We

used the database to simulate data coming from client computers

and then read the data in streams into either Cayuga or

SQLstream.

We also looked at the parallel distributed file system, Lustre

events, which are contained in the syslogs. The file system has

metadata servers and object storage servers as well as clients to

interact with the overall file system. We looked specifically for

client evictions at the suggestion of TACC. One client evicted

message may not indicate any problem with the system, but if

several clients have evicted notices and occur at the same time it

could possibly mean there is a problem. A network switch could

have failed or a computer program running on the compute nodes

could be writing many small files to the file system. A notification

to a system administrator would be helpful at this point to indicate

that there is a potential for some type of failure which could be

checked as soon as the alert was received. In the event it is not a

system failure but a user’s application causing an issue, then that

user could be contacted in order to resolve the problem thereby

increasing the performance and reliability of the file system and

minimizing the impact on other users.

Using the historical data, we also experimented with the sequence

of events from the Lustre metadata, object storage servers, and

compute nodes to see if, given an unplanned down time, the

frequency of the events by system, previous to the downtime,

show a pattern that could be detected. Using Microsoft Excel to

graph the number of events by system type, we could see no

discernible patterns between the frequency of events by type being

logged and an unplanned system down time.

While examining the log files from the various systems we

learned that in the Lustre file system, to reduce system log traffic

and the size of log files, errors that occur which are duplicates are

counted and entered as “Skipped” messages and displayed only

once in the log file with the same time stamp as the last event.

When a different error type is logged that message will then be

displayed after the “Skipped” message and event. When looking

at the data graphically in Microsoft Excel, the “Skipped”

messages are only counted once and could have occurred any

http://www.sqlstream.com/

number of times; therefore, looking for patterns of frequencies

will not be conclusive for the Lustre file system. When thinking

about how to resolve this issue we initially thought to duplicate

the messages while reading the historical data into the database.

However, the timestamp information of the “Skipped” messages is

not available. Although this exercise did not show conclusive

patterns of frequencies, we believe that patterns would emerge if

given more information or different system types.

5. SUCCESS STORIES
One of the first goals met in our work was the development of a

framework that enabled us to replay a log at any speed to facilitate

the development and testing of analysis tools and evaluation of

monitoring techniques. This includes techniques and practices for

consuming logs and data standards to ensure compatibility with

our toolset. With this framework we can replay logs in real time to

evaluate tools like SQLstream in a monitoring scenario just as

well as we can replay 12 months of logs in a day to analyze the

data.

As a first step in looking at log data, a useful tool is a graph

showing the number of event logs over time. We built a web-

based tool, driven by our database, which allows us to easily add

new data, export the values used to generate the graph for more

comprehensive analysis in a variety of file types, as well as

navigate through years of event data and ‘zoom’ in on potentially

meaningful areas in the log data. This tool is also very helpful in

spotting, identifying, and solving some easily preventable issues

like dictionary and denial of service attacks as well as

misconfigured tasks or jobs.

Using our collection of tools we are able to identify meaningful

events in logs and have the ability to monitor them in real time.

We can then react to an event or a condition (some number of

events within a period of time) by alerting an operator, recording

the occurrence, taking corrective action, or any combination

thereof. For example, a particular circumstance we were able to

easily identify as a problem using our approach was a login attack.

On a login node this condition could represent a dictionary attack,

a [distributed] denial of service attack, or a rogue process

configured by a user or administrator. Our solution was simple;

we would configure SQLstream to detect n failed logins within t

minutes from the same address. When that condition was met, we

would automatically block that address for 30 minutes. We

implemented this procedure at CAC on a login node and were

able to stop a dictionary attack from an out of network host that

very same day with no operator intervention.

In another instance we were able to combine the features of our

toolset with specific institutional knowledge from TACC to define

a process with the ability to minimize the impact of an emerging

condition on user jobs. Specifically, we were told by staff at

TACC of a set of events commonly referred to as “client

evictions” that indicated one of several potential problems with

the Lustre file system that would ultimately affect running and

queued jobs. The key to success was that simply finding a client

eviction event was not indicative of a wide ranging problem. We

needed to use SQLstream and exploit its monitoring ability to

detect multiple client evictions from multiple sources at any point

in time or, over a definable period of time. Once the stated

conditions were met, we had the ability to notify operators

immediately, thereby providing the ability to minimize the impact

on user’s jobs of the file system problem by alerting operators as

the problem emerged rather than waiting for complaints or failed

job trouble tickets from users.

6. FUTURE WORK
By monitoring events through time and multiple sources all at

once, we believe there are more research and testing we can do to

predict issues and possible failures on distributed systems. While

Nagios and Ganglia provide real-time monitoring, it is really

based on an individual system or service. Depending on the

severity, patterns, and type of events, either an action can be

scripted, a system administrator notified, or counters added to

Nagios or Ganglia.

CAC can provide a novel approach to system monitoring. By

using logs from TACC¹s Ranger, we have made substantial strides

towards predictive log analysis and near real-time reactive

monitoring. Testing using historical data has demonstrated

promising results. By using SQLstream and/or Cayuga to process

data and generating data visualizations, our team is now ready for

additional XSEDE sites to participate in the next stage of testing

and evaluation.

7. ACKNOWLEDGMENTS
This project was conducted using the resources of CAC, which

receives funding from Cornell University, the National Science

Foundation, and other leading public agencies, foundations, and

corporations. The authors also wish to acknowledge TACC at The

University of Texas at Austin for helping to enable this research.

8. REFERENCES
[1] R. Vaarandi. Mining Event Logs with SLCT and LogHound.

In Proceedings of the 2008 IEEE/IFIP Network Operations

and Management Symposium. (ISBN: 978-1-4244-2066-7).

[2] Jon Stearley. Towards Informatic Analysis of Syslogs. In

Proceedings of the 2004 IEEE International Conference on

Cluster Computing Pages 309-319.

[3] A.J. Oliner and J. Stearley. What supercomputers say: A

study of five system logs. In Proceedings of the 2007

International Conference on Dependable Systems and

Networks (DSN), 2007.

[4] Demers, J. Gehrke, M. Hong, B. Panda, M. Riedewald, V.

Sharma, and W. White. Cayuga: A general purpose event

monitoring system. Proc. CIDR, 2007.

