
High Performance Computing in the

Manycore Era: Challenges for Applications

Steve Lantz

Senior Research Associate

Cornell University Center for Advanced Computing (CAC)

slantz@cac.cornell.edu

www.cac.cornell.edu

CACM Seminar at RIT, Nov. 17, 2015

mailto:your@cac.cornell.edu

Manycore, not Manticore...

11/17/2015 www.cac.cornell.edu 2

CPU Speed and Complexity Trends

11/17/2015 www.cac.cornell.edu 3

Committee on Sustaining Growth in Computing Performance, National Research Council.

"What Is Computer Performance?"

In The Future of Computing Performance: Game Over or Next Level?

Washington, DC: The National Academies Press, 2011.

discontinuity in ~2004

How TACC Stampede Reached ~10 Petaflop/s

• 2+ petaflop/s of Intel Xeon E5

• 7+ additional petaflop/s of Intel

Xeon Phi™ SE10P coprocessors

• Follows the hardware trend of the

last 10 years: processors gain

cores (execution engines) rather

than clock speed

• So is Moore’s Law dead? No!

– Transistor densities are still doubling every 2 years

– Clock rates have stalled at < 4 GHz due to power consumption

– Only way to increase flop/s/watt is through greater on-die parallelism

• Architectures must move from multi-core to manycore

11/17/2015 www.cac.cornell.edu 4

Photo by TACC, June 2012

Manycore Elements in Petaflop/s Machines

• CPUs: Wider vector units, more cores

– General-purpose platform

– Single-thread performance emphasis

– Example, dual E5-2680 on Stampede: 0.34 Tflop/s, 260W

• GPUs: Thousands of very simple stream processors

– Special multithreading APIs: CUDA, OpenCL, OpenACC

– High floating-point throughput

– Example, Tesla K20 on Stampede: 1.17 Tflop/s, 225W

• MICs: Dozens of CPU cores optimized for floating-point efficiency

– General-purpose codes will run (like CPU)

– High floating-point throughput for multithreaded code (like GPU)

– Example, Xeon Phi SE10P on Stampede: 1.06 Tflops/s, 300W

11/17/2015 www.cac.cornell.edu 5

Xeon Phi: What Is It?

• Complete system on PCIe card (Linux OS, processor, memory)

• x86-derived processor featuring large number of simplified cores

– Many Integrated Core (MIC) architecture

• Optimized for floating point throughput

– Lots of floating-point operations per second (flop/s) for HPC

• Modified 64-bit x86 instruction set

– Code compatible (C, C++, Fortran) after re-compile

– Not binary compatible with x86_64

• Intel’s answer to general purpose GPU (GPGPU) computing

– Similar flop/s/watt to GPU-based products like NVIDIA Tesla

www.cac.cornell.edu 6 11/17/2015

Power-Saving Choices in the Xeon Phi Design

• Reduce clock speed

• Omit power-hungry features

such as branch prediction,

out-of-order execution

• Simplify instruction decoder,

but maintain high instruction

rate via 2–4 threads per core

• Eliminate a shared L3 cache

in favor of coherent L2 caches

• And add... lots of cores!

• These factors tend to degrade

single-thread performance, so

multithreading is essential

11/17/2015 www.cac.cornell.edu 7

MIC vs. CPU

Number of cores

Clock speed (GHz)

SIMD width (bits)

DP Gflop/s/core

HW threads/core

• CPUs designed for all workloads, high single-thread performance

• MIC also general purpose, though optimized for number crunching

– Focus on high aggregate throughput via lots of weaker threads

– Possible to achieve >2x performance compared to dual E5 CPUs

MIC (SE10P) CPU (E5) MIC is…

61 8 much higher

1.01 2.7 lower

512 256 higher

16+ 21+ lower

4 1* higher

www.cac.cornell.edu 8 11/17/2015

Two Types of MIC (and CPU) Parallelism

• Threading (task parallelism)

– OpenMP, Cilk Plus, TBB, Pthreads, etc.

– It’s all about sharing work and scheduling

• Vectorization (data parallelism)

– “Lock step” Instruction Level Parallelization (SIMD)

– Requires management of synchronized instruction execution

– It’s all about finding simultaneous operations

• To fully utilize MIC, both types of parallelism need to be identified

and exploited

– Need 2–4+ threads to keep a MIC core busy (in-order execution stalls)

– Vectorized loops gain 8x or 16x performance on MIC!

– Important for CPUs as well: gain of 4x or 8x on Sandy Bridge

11/17/2015 www.cac.cornell.edu 9

Parallelism and Performance on MIC and CPU

11/17/2015 www.cac.cornell.edu 10

Courtesy James Reinders, Intel

• PCIe card with Intel

Xeon Phi™ (MIC)

• Host with dual Intel Xeon

“Sandy Bridge” (CPU)

Typical Configuration of a Stampede Node

Linux OS Linux

micro OS

PCIe

HCA

Access from network:

ssh <host> (OS)

ssh <coprocessor>

 (mOS)

Virtual IP*

service for MIC

www.cac.cornell.edu 11 11/17/2015

Offload Execution Model

11/17/2015 www.cac.cornell.edu 12

Courtesy Scott McMillan, Intel

• OpenMP-like directives

indicate which data and

functions to send from CPU

to MIC for execution

• Unified source code

• Code modifications required

• Compile once

• Run in parallel using MPI

(Message Passing Interface)

and/or scripting, if desired

“Symmetric” Execution Model

11/17/2015 www.cac.cornell.edu 13

• Message passing (MPI) on

CPUs and MICs alike

• Unified source code

• Code modifications advisable

– Multithread with OpenMP or

Threaded Building Blocks

– Assign different work to

CPUs vs. MICs

• Compile twice, 2 executables

– One native to host

– One native to MIC

• Run in parallel using MPI

 Courtesy Scott McMillan, Intel

Application: High Energy Physics

11/17/2015 www.cac.cornell.edu 14

Collaborators

K.McDermott,

D.Riley,

P.Wittich

 (Cornell);

G.Cerati,

M.Tadel,

F.Würthwein,

A.Yagil

 (UCSD);

P.Elmer

 (Princeton)

Photo

CMS detector,

LHC, CERN

LHC: It’s a Collider!...

11/17/2015 www.cac.cornell.edu 15

The Large Hadron Collider

smashes beams of protons

into each other, as they go

repeatedly around a ring

17 miles in circumference

at nearly the speed of light

Collision Energy Becomes Particle Masses: E=mc2

11/17/2015 www.cac.cornell.edu 16

CMS: Like a Fast Camera for Identifying Particles

11/17/2015 www.cac.cornell.edu 17

Particles interact differently, so CMS is a detector with different layers to

identify the decay remnants of Higgs bosons and other unstable particles

Big Data Challenge

11/17/2015 www.cac.cornell.edu 18

• 40 million collisions a second

• Most are boring

– Dropped within 3 μs

• Higgs events: super rare

– 1016 collisions → 106 Higgs

– Maybe 1% of these are found

• Ultimate “needle in a haystack”

• “Big Data” since before it was

cool

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

For Interesting Events: Tracking

• Goal is to reconstruct the trajectory (track) of each charged particle

• Solenoidal B field bends the trajectory in one plane (“transverse”)

• Trajectory is a helix described by 5 parameters, pT, η, φ, z0, d0

• We are most interested in high-momentum (high-pT) tracks

• Trajectory may change due to interaction with materials

• Ultimately we care mainly about:

– Initial track parameters

– Exit position to the calorimeters

• We use a Kalman Filter-based technique

11/17/2015 www.cac.cornell.edu 19

Why Kalman Filter for Particle Tracking?

• Naively, the particle’s trajectory

is described by a single helix

• Forget it

– Non-uniform B field

– Scattering

– Energy loss

– ...

• Trajectory is only locally helical

• Kalman Filter allows us to take

these effects into account, while

preserving a locally smooth

trajectory

11/17/2015 www.cac.cornell.edu 20

science

fiction...

..vs. real

materials

Kalman Filter

• Method for obtaining best

estimate of the five track

parameters

• Natural way of including

interactions in the material

(process noise) and hit position

uncertainty (measurement error)

• Used both in pattern recognition

(i.e., determining which hits to

group together as coming from

one particle) and in fitting (i.e.,

determining the ultimate track

parameters)

11/17/2015 www.cac.cornell.edu 21

R. Frühwirth, Nucl. Instr. Meth. A 262, 444 (1987), DOI:10.1016/0168-9002(87)90887-4; http://www.mathworks.com/discovery/kalman-filter.html

doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
doi:10.1016/0168-9002(87)90887-4
http://www.mathworks.com/discovery/kalman-filter.html
http://www.mathworks.com/discovery/kalman-filter.html
http://www.mathworks.com/discovery/kalman-filter.html

Tracking as Kalman Filter

11/17/2015 www.cac.cornell.edu 22

• Track reconstruction has 3 main steps: seeding, building, and fitting

• Building and fitting repeat the basic logic unit of the Kalman Filter...

– From current track state

(parameters and

uncertainties), track is

propagated to next layer

– Using hit measurement

information, track state is

updated (filtered)

– Procedure is repeated

until last layer is reached

Track Fitting as Kalman Filter

• The track fit consists of the simple

repetition of the basic logic unit for

hits that are already determined to

belong to the same track

• Divided into two stages

– Forward fit: best estimate at collision

point

– Backward smoothing: best estimate

at face of calorimeter

• Computationally, the Kalman Filter is

a sequence of matrix operations with

small matrices (dimension 6 or less)

• But, many tracks can be fit in parallel

11/17/2015 www.cac.cornell.edu 23

“Matriplex” Structure for Kalman Filter Operations

• Each individual matrix is small: 3x3 or 6x6, and may be symmetric

• Store in “matrix-major” order so 16 matrices work in sync (SIMD)

• Potential for 60 vector units on MIC to work on 960 tracks at once!

11/17/2015 www.cac.cornell.edu 24

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N) Mn+1(1,1) Mn+1(1,2) … Mn+1(1,N) Mn+1(2,1) … , … Mn+1(N,N) M1+2n(1,1)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N) Mn+2(1,1) Mn+2 (1,2) … Mn+2 (1,N) Mn+2 (2,1) … , … Mn+2(N,N)

…

…

…

…

…

…

…

…

…

…

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N) M2n(0,0) M2n(0,1) … M2n(0,N) M2n(1,0) … M2n(N,N) M3n(0,0)

Matrix size NxN, vector unit size n = 16 for MIC → data parallelism

f
a
s
t

m

e
m

o
r
y

d
i
r
e
c
t
i
o
n

R1

R2

…

Rn

vector

unit

Initialization of Matriplex from Track Data

• This must vectorize to perform well!

• It must also minimize cache misses

11/17/2015 www.cac.cornell.edu 25

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N)

…

…

…

…

…

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N)

f
a
s
t

m

e
m

o
r
y

d
i
r
e
c
t
i
o
n

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

M1(1,1)

M1(1,2)

…

M1(1,N)

M1(2,1)

…

M1(N,N)

R1

R2

…

Rn

vector

unit

separate input tracks

Matriplex

Matriplex::CopyIn

• Takes a single array as input and spreads it into fArray so that it

occupies the n-th position in the Matriplex ordering (0 < n < N–1)

11/17/2015 26

void CopyIn(idx_t n, T *arr)

{

 for (idx_t i = n; i < kTotSize; i += N)

 {

 fArray[i] = *(arr++);

 }

}

www.cac.cornell.edu

Intel VTune Analysis of L1 Cache Misses

Function / Call Stack CPU Time Clockticks
Instructions

Retired CPI Rate L1 Misses
L1 Hit

Ratio

Estimated

Latency

Impact

L2_DATA_READ

MISS

MEM_FILL

Matriplex::MatriplexSym<float,

(int)3, (int)16>::CopyIn [1] 0.888531 1.1E+09 9.5E+08 1.1579 27750000 0.864634 39.5002 500000

Matriplex::MatriplexSym<float,

(int)6, (int)16>::CopyIn [2] 0.565429 7E+08 1E+08 7.00001 3750000 0.75 0 2000000

MkFitter::InputTracksAndHits 0.161551 2E+08 1E+08 2 0 1 0 0

Matriplex::Matriplex<float,

(int)3, (int)1, (int)16>::CopyIn 0.379645 4.7E+08 3.5E+08 1.34286 0 1 0 1000000

MultHelixProp 0.484653 6E+08 2E+08 3 0 1 0 0

Matriplex::MatriplexSym<float,

(int)6, (int)16>::Subtract 0.145396 1.8E+08 50000000 3.60001 0 1 0 0

11/17/2015 27

[1] equivalent to MPlexLS; called from MkFitter::InputTracksAndHits; likely to be the initialization of Err

[2] equivalent to MPlexHS; called from MkFitter::InputTracksAndHits; likely to be the initialization of msErr

*All analysis is restricted to the final part of the run; only the fitting performance is relevant, so the simulation is skipped

www.cac.cornell.edu

A Faster, Two-Step Initialization of Matriplex

• Step 1: straight copies from memory

• Step 2: equivalent to matrix transpose

11/17/2015 www.cac.cornell.edu 28

M1(1,1) M1(1,2) … M1(1,N) M1(2,1) … , … M1(N,N)

M2(1,1) M2(1,2) … M2(1,N) M2(2,1) … , … M2(N,N)

…

…

…

…

…

Mn(1,1) Mn(1,2) … Mn(1,N) Mn(2,1) … Mn(N,N)

f
a
s
t

m

e
m

o
r
y

d
i
r
e
c
t
i
o
n

M1(1,1) M1(1,1) … M1(1,1)

M1(1,2) M1(1,2) … M1(1,2)

…

…

…

M1(1,N) M1(1,N) … M1(1,N)

M1(2,1) M1(2,1) … M1(2,1)

…

…

…

M1(N,N) M1(N,N) … M1(N,N)

R1

R2

…

Rn

vector

unit

packed temp array,

contiguous memory

Matriplex

Full Vectorization Is Crucial to Performance…

11/17/2015 www.cac.cornell.edu 29

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

Si
n

gl
le

-t
h

re
ad

ed
 t

im
e,

 s
ec

.

Data input method #

Comparison of input methods for fitting 1M tracks using Matriplex

input

fit

2-step

original

MKL

BEST:

2-step +

vgather

2-step +

vscatter original +

vscatter

Vectorization of CopyIn: Summary

• Intel VTune’s metrics revealed that CopyIn, which distributes input

data into a Matriplex, was underperforming

– Assembler code showed lack of vectorization on Xeon Phi

– Compiler was not converting strided for-loops into vectorized stores

• Underlying operation is equivalent to a matrix transpose

– Intel MKL didn’t work well; it’s best at doing large-matrix operations

• Fastest Xeon Phi code uses Intel’s _mm512 vector intrinsics

– To do a matrix transpose, either a load or a store must be strided

– Intel provides intrinsics (low-level function calls) that can do this

– Strided loads (vgather) work better than strided stores (vscatter)

– Best: copy all data into a packed temp array, vgather into Matriplex

• Big gain from recoding one routine for best SIMD performance

11/17/2015 www.cac.cornell.edu 30

Good Utilization of MIC for Track Fitting!

• Fitting is vectorized with Matriplex and parallelized using OpenMP

• Same simulated physics results as production code, but faster

– Effective performance of vectorization is about 50% utilization

– Parallelization performance is close to ideal in case of 1 thread/core

11/17/2015 www.cac.cornell.edu 31

Track Building

• Building is harder than fitting

• After propagating a track candidate

to the next layer, hits are searched

for within a compatibility window

• Track candidate needs to branch in

case of multiple matches

– The algorithm needs to be robust

against missing/outlier hits

• Due to branching, track building is

the most time consuming step in

event reconstruction, by far

– Design choices must aim to boost

performance on the coprocessor

11/17/2015 www.cac.cornell.edu 32

Strategy for Track Building

• Keep the same goal of vectorizing and multithreading all operations

– Vectorize by continuing to use Matriplex, just as in fitting

– Multithread by binning tracks in eta (related to angle from axis)

• Add two big complications

– Hit selection: hit(s) on next layer must be selected from ~10k hits

– Branching: track candidate must be cloned for >1 selected hit

• Speed up hit selection by binning hits in both eta and phi (azimuth)

– Faster lookup: compatible hits for a given track are found in a few bins

• Limit branching by putting a cap on the number of candidate tracks

– Sort the candidate tracks at the completion of each layer

– Keep only the best candidates; discard excess above the cap

11/17/2015 www.cac.cornell.edu 33

Eta Binning

• Eta binning is natural for both track candidates and hits

– Tracks don’t curve in eta

• Form overlapping bins of hits, 2x wider than bins of track candidates

– Track candidates never need to search beyond one extra-wide bin

• Associate threads with distinct eta bins of track candidates

– Assign 1 thread to j bins of track candidates, or vice versa (j can be 1)

– Threads work entirely independently → task parallelism

11/17/2015 www.cac.cornell.edu 34

Memory Access Problems

11/17/2015 www.cac.cornell.edu 35

• Profiling showed the busiest functions were memory operations!

• Cloning of candidates and loading of hits were major bottlenecks

• This was alleviated by reducing sizes of Track by 20%, Hit by 40%

– Track now references Hits by index, instead of carrying full copies

Scaling Problems

• Test parallelization by distributing threads across 21 eta bins

– For nEtaBin/nThreads = j > 1, assign j eta bins to each thread

– For nThreads/nEtaBin = j > 1, assign j threads to each eta bin

• Observe poor scaling and saturation of speedup

11/17/2015 www.cac.cornell.edu 36

Amdahl’s Law

• Possible explanation: some fraction B of work is a serial bottleneck

• If so, the minimum time for n threads is set by Amdahl’s Law

T(n) = T(1) [(1−B)/n + B]
parallelizable… not!

• Note, asymptote as n → is not zero, but T(1)B

• Idea: plot the scaling data to see if it fits the above functional form

– If it does, start looking for the source of B

– Progressively exclude any code not in an OpenMP parallel section

– Trivial-looking code may actually be a serial bottleneck…

11/17/2015 www.cac.cornell.edu 37

Busted!

• Huge improvement from excluding one code line creating eta bins

EventOfCombCandidates event_of_comb_cands;

// constructor triggers a new std::vector<EtaBinOfCandidates>

• Accounts for 0.145s of serial code time (0.155s)

11/17/2015 www.cac.cornell.edu 38

What’s Going On?

• Did a fit to the timing results on Xeon: T(n) = T(1) * (0.74/n + 0.26)

– Serial fraction B was unacceptably large!

• Soon found that most of B came from re-instantiating a big data

structure when starting up track-building for a new event

– Fixed the issue by replacing deletion/creation with a simple reset

• After the fix, Amdahl still fits: T(n) = T(1) * (0.91/n + 0.09)

– Still have some remaining B, or maybe there’s another cause…

• Can explain residual non-ideal scaling by non-uniformity of

occupancy within threads, i.e., some threads take longer than others

– Need to define strategies for an efficient “next in line” approach

– Need to implement dynamic reallocation of thread resources

• Work is ongoing!

11/17/2015 www.cac.cornell.edu 39

Conclusions: Tracking R&D

• Significant progress in creating

parallelized and vectorized tracking

software on Xeon/Xeon Phi

– Among next steps: consider GPUs

• Good understanding of bottlenecks

and limitations

– Recent versions of the code are

faster and scale better

– Future improvements are on the way

• Have begun to process realistic data,

preliminary results are encouraging

• Still need to incorporate realistic

geometry and materials

11/17/2015 www.cac.cornell.edu 40

The project is solid and promising

but we still have a long way to go

Conclusions: HPC in the Manycore Era

• HPC has moved beyond giant clusters that rely on coarse-grained

parallelism and MPI (Message Passing Interface) communication

– Coarse-grained: big tasks are parceled out to a cluster

– MPI: tasks pass messages to each other over a local network

• HPC now also involves manycore engines that rely on fine-grained

parallelism and SIMD within shared memory

– Fine-grained: threads run numerous subtasks on low-power cores

– SIMD: subtasks act upon multiple sets of operands simultaneously

• Manycore is quickly becoming the norm in laptops and other devices

• Programmers who want their code to run fast must consider how

each big task breaks down into smaller parallel chunks

– Multithreading must be enabled explicitly through OpenMP or an API

– Compilers can vectorize loops automatically, if data are arranged well

11/17/2015 www.cac.cornell.edu 41

