
Autosave for Research

Where to Start with Checkpoint/Restart

Brandon Barker

Computational Scientist

Cornell University Center for Advanced Computing (CAC)

brandon.barker@cornell.edu

www.cac.cornell.edu

Workshop: High Performance Computing on Stampede

January 15, 2015

mailto:brandon.barker@cornell.edu

The problem

1. You test out your newly developed software on a small dataset.

2. All is well, you submit a big job and go read some papers or watch

some TV.

3. Several days later, one of the following happens:

– Someone uses up all the memory on the system.

– Power failure

– Unplanned maintenance

– ???

1/13/2015 www.cac.cornell.edu 2

Ad-hoc solutions
i.e. dodgy, incomplete, and error-prone solutions

• Save data every N iterations

– Takes time to code.

– May miss some data.

– Have to write custom resume code.

– For all of these, different sections of the program may need different

save and restore procedures.

• For some tasks: run on discrete chunks of data.

– Works best when

• There are many data items.

• Each item can be processed quickly.

• There are no dependencies between items

– In short, embarrassingly parallel programs can use simple book-keeping

for C/R.

– Still, it involves some work on the part of the researcher for restoration.

 1/13/2015 www.cac.cornell.edu 3

What is C/R?

Think of virtual machines: if you’ve ever saved and restarted a virtual

machine or emulator, you have used a type of C/R!

1/13/2015 www.cac.cornell.edu 4

Checkpoint: save the program state

• Program memory, open file descriptors, open sockets, process ids

(PIDs), UNIX pipes, shared memory segments, etc.

• For distributed processes, need to coordinate checkpointing across

processes.

 Restart: restart the process with saved state

• Some of the above require special permissions to restore (e.g.

PIDs); not all C/R models can accommodate this. Others (like VMs)

get it for free.

• Some of the above may be impossible to restore in certain contexts

(e.g. sockets that have closed and cannot be re-established).

Use cases of C/R

• Recovery/fault tolerance (restart after a crash).

• Save scientific interactive session: R, MATLAB, IPython, etc.

• Skip long initialization times.

• Interact with and analyze results of in-progress CPU-intensive

process.

• Debugging

– Checkpoint image for ultimate in reproducibility.

– Make an existing debugger reversible

• Migrate process (or even multiple VMs).

• Robust “exception handling” in languages without exceptions or

garbage collectors.

1/13/2015 www.cac.cornell.edu 5

Virtual Machine (VM) C/R

VM-level C/R is relatively easy to implement, once you have a VM: the

system is already isolated.

1/13/2015 www.cac.cornell.edu 6

Implementations

• Most any hypervisor platform:

KVM, Virtualbox, VMWare, etc.

– KVM is relatively lightweight.

Pros

• Very simple to use.

• Few surprises.

• Many applications supported; few

limitations.

Cons

• Operating in a VM context

requires predefined partitioning of

RAM and CPU resources.

• More overhead in most categories

(storage of VM image, RAM

snapshot, etc.).

• Still a challenge for multi-VM C/R.

Containers with C/R

Containers are a form of virtualization that uses a single OS kernel to

run multiple, seemingly isolated, OS environments.

1/13/2015 www.cac.cornell.edu 7

Implementations

• OpenVZ

• CRIU – C/R In Userspace

• (Not all containers support C/R)

Pros

• Like VMs, enjoy the benefit of

existing virtualization technology.

• Fewer surprises.

Cons

• May incur additional overhead,

due to C/R of unnecessary

processes and storage.

• Still a challenge for multi-VM C/R.

Kernel-modifying C/R

Requires kernel modules or kernel patches to run.

1/13/2015 www.cac.cornell.edu 8

Implementations

• OpenVZ

• BLCR – Berkeley Lab C/R

• CRIU – But now in mainline!

Pros

• Varied.

Cons

• Required modification of the

kernel.

• May not work for all kernels

(BLCR does not past 3.7.1).

(Multi) application C/R

Checkpoint one or several interacting processes. Does not use the full

container model.

1/13/2015 www.cac.cornell.edu 9

Implementations

• BLCR

• CRIU

• DMTCP – Distributed

MultiThreaded CheckPointing

Pros

• Usually simple to use.

• Lower overhead.

Cons

• May have surprises; applications

use different advanced feature

sets (e.g. IPC), and each package

will have a different feature set.

Test first!

• BLCR requires modification of

application for static linking.

• DMTCP static linking support is

experimental

• CRIU is a bit new.

Custom C/R

This is like ad-hoc, but when you do it even though you know other C/R

solutions exist.

1/13/2015 www.cac.cornell.edu 10

Libraries that help

• (p)HDF5

• NetCDF

Pros

• Very low over-head.

• Few surprises if done properly.

Cons

• Needs thorough testing for each

application.

• Lots of development time.

• Less standardization.

• Always a chance something is

missed.

What is a good C/R solution for HPC?

1/13/2015 www.cac.cornell.edu 11

Requirements

• Must be non-invasive

– No kernel modifications

– Preferably no libraries needed on

nodes.

• Should have low overhead.

• Must support distributed

applications.

Bonuses

• Easy to use.

• Stable for the user.

It looks like DMTCP is the best candidate, for now.

An overview of DMTCP

• Distributed MultiThreaded CheckPointing.

• Threads (OpenMP, POSIX threads), MPI.

• Easy to build and install library.

• Not necessary to link with existing dynamically linked applications.

• DMTCP libs replace (wrap) standard libs and syscalls.

• DMTCP lib directory should be in LD_LIBRARY_PATH and

LD_PRELOAD (handled by DMTCP scripts).

1/13/2015 www.cac.cornell.edu 12

Counting in C

1/13/2015 www.cac.cornell.edu 13

#include <stdio.h>

#include <unistd.h>

int main(void) {

 unsigned long i = 0;

 while (1) {

 printf("%lu ", i);

 i = i + 1;

 sleep(1);

 fflush(stdout);

 }

}

• dmtcp_checkpoint -i 5 ./count

• dmtcp_restart ckpt_count xxx.dmtcp

Counting in Perl

1/13/2015 www.cac.cornell.edu 14

#/usr/bin/perl -w

$| = 1; # autoflush STDOUT

$i = 0;

while (true) {

 print "$i ";

 $i = $i + 1;

 sleep(1);

}

• dmtcp_checkpoint -i 5 perl count.pl

• dmtcp_restart ckpt_perl_xxx.dmtcp

X11 (graphics) support

• All current non-VM C/R relies on VNC for X11 support.

• DMTCP has a known bug with checkpointing xterm.

• Due to dependence on VNC and general complications, only try to

use if you have to.

• Not supported on Stampede or most other large HPC systems.

1/13/2015 www.cac.cornell.edu 15

Reversible Debugging with FReD

• Supports GDB and several interpreters

• Allows you to inspect one part of the program, then go back to a

previous state without restarting the debugger.

• github.com/fred-dbg/fred

• youtu.be/1l_wGZz0JEE

1/13/2015 www.cac.cornell.edu 16

DMTCP plugins

• Used to modify the behavior of DMTCP

– Modify behavior at the time of checkpoint or restart.

– Add wrapper functions around library functions (including syscalls).

– Much of DMTCP itself is now written as plugins.

– Custom plugins could add support for callbacks in user’s program.

1/13/2015 www.cac.cornell.edu 17

Conclusions

• DMTCP appears to be good for most jobs for now. Also easy to

install.

• CRIU will likely be a strong contender in the future, but it is not yet

ready for HPC.

• BLCR and OpenVZ may be more robust than DMTCP for PID

restoration (provided your kernel has support for BLCR or OpenVZ).

• For the foreseeable future, it is unlikely that any one C/R framework

will meet everyone’s needs.

1/13/2015 www.cac.cornell.edu 18

Additional Resources

• Source and other docs: github.com/cornell-comp-internal/CR-demos

• FReD: github.com/fred-dbg/fred

• Python and DMTCP: youtu.be/1l_wGZz0JEE

• Comparison Chart: criu.org/Comparison_to_other_CR_projects

1/13/2015 www.cac.cornell.edu 19

