
Introduction to MIC

Steve Lantz

Senior Research Associate

Cornell University Center for Advanced Computing (CAC)

slantz@cac.cornell.edu

With contributions from Aaron Birkland at CAC, and Lars Koesterke, Bill Barth,

Kent Milfield, John Cazes, and Lucas Wilson at TACC

www.cac.cornell.edu

Workshop: High Performance Computing on Stampede, Jan. 14-15, 2015

mailto:your@cac.cornell.edu

Stampede Specs

• 6400+ Dell PowerEdge C8220z server nodes in system

– 16 Intel Xeon E5-2680 “Sandy Bridge” cores per node, 102400 total

– 32GB memory per node, 200TB total

• Over 6400 Intel Xeon Phi™ SE10P coprocessor cards

• 2+ petaflop/s Intel Xeon E5

• 7+ additional petaflop/s of

Intel Xeon Phi™ SE10P coprocessors

to change the power/performance

curves of supercomputing

• Over 70% of cycles are from Xeon Phi

• Learn to leverage those 7+ Pflop/s

 Photo by TACC, June 2012

www.cac.cornell.edu 2 1/15/2015

Xeon Phi: What Is It?

• Complete system on PCIe card (Linux OS, processor, memory)

• x86-derived processor featuring large number of simplified cores

– Many Integrated Core (MIC) architecture

• Optimized for floating point throughput

• Modified 64-bit x86 instruction set

– Code compatible (C, C++, FORTRAN) with re-compile

– Not binary compatible with x86_64

• Supports same HPC programming paradigms with same code (MPI,

OpenMP, Hybrid).

• Offers new Offload paradigm

– C/FORTRAN markup to denote code to execute on Phi at runtime

– Link to MKL library implementation which can offload automatically

 www.cac.cornell.edu 3 1/15/2015

Stampede Footprint vs. Ranger

• Capabilities are 17x; footprint is 2.7x; power draw is 2.1x

Ranger: 3000 ft2

 0.6 PF

 3 MW

Stampede:

8000 ft2

10 PF

6.5 MW

www.cac.cornell.edu 4 1/15/2015

How Does Stampede Reach Petaflop/s?

• Hardware trend since around 2004: processors gain more cores

(execution engines) rather than greater clock speed

– IBM POWER4 (2001) became the first chip with 2 cores, 1.1–1.9 GHz;

meanwhile, Intel’s single-core Pentium 4 was a bust at >3.8 GHz

– Top server and workstation chips in 2014 (Intel Xeon, AMD Opteron)

now have 4, 8, even 15 or 16 cores, running at 1.6–3.2 GHz

• Does it mean Moore’s Law is dead? No!

– Transistor densities are still doubling every 2 years

– Clock rates have stalled at < 4 GHz due to power consumption

– Only way to increase flop/s/watt is through greater on-die parallelism…

www.cac.cornell.edu 5 1/15/2015

CPU Speed and Complexity Trends

Committee on Sustaining Growth in Computing Performance, National Research Council.

"What Is Computer Performance?"

In The Future of Computing Performance: Game Over or Next Level?

Washington, DC: The National Academies Press, 2011.

www.cac.cornell.edu 6 1/15/2015

Trends for Petaflop/s Machines

• CPUs: Wider vector units, more cores

– General-purpose in nature

– High single-thread performance, moderate floating point throughput

– 2x E5-2680 on Stampede: 0.34 Tflop/s, 260W

• GPUs: Thousands of very simple stream processors

– Specialized for floating point

– New programming models: CUDA, OpenCL, OpenACC

– Tesla K20 on Stampede: 1.17 Tflop/s, 225W

• MIC: Take CPU trends to an extreme, optimize for floating point

– Retain general-purpose nature and programming models from CPU

– Low single-thread performance, high aggregate FP throughput

– SE10P on Stampede: 1.06 Tflops/s, 300W

www.cac.cornell.edu 7 1/15/2015

Attractiveness of MIC

• Programming MIC is similar to programming for CPUs

– C/C++, Fortran

– OpenMP, MPI

– MPI on host and coprocessor

– General purpose computing, not just kernels

– In many cases, just re-compile

• Optimizing for MIC is similar to optimizing for CPUs

– “Optimize once, run anywhere”

– Fundamental architectural similarities

• Offers a new, flexible Offload programming paradigm

– Resembles GPU computing patterns in some ways

www.cac.cornell.edu 8 1/15/2015

MIC Architecture

• SE10P is first production version used in Stampede

– Chip, memory on PCIe card

– 61 cores, each containing:

• 64 KB L1 cache

• 512 KB L2 cache

• 512 byte vector unit

– 31.5 MB total coherent L2

 cache, connected by ring bus

– 8 GB GDDR5 memory

• Very fast, 352 GB/s vs

 50 GB/s/socket for E5

Courtesy Intel

www.cac.cornell.edu 9 1/15/2015

Key Design Decisions: Saving Power

• Omit power-hungry features such as branch prediction, out-of-order

execution (at the cost of single-thread performance)

• Simplify instruction decoder so that instructions are issued every

other clock cycle from a given thread (a single thread can utilize at

most 50% of a core)

• Reduce clock speed (at the cost of single-thread performance,

obviously)

• Eliminate a shared L3 cache in favor of coherent L2 caches

(performance impacts are subtle – can help and hurt)

www.cac.cornell.edu 10 1/15/2015

Key Design Decisions: Floating Point Performance

• Use wide vector units (512-bit vs. 256-bit for Xeon E5)

• Use more cores

• Use up to four hardware threads per core

– Compensates for some of the power-saving compromises, such as the

in-order execution and the simplified instruction decoder

• Use fast GDDR5 memory

As a result:

Performance characteristics are very different from server CPUs!

www.cac.cornell.edu 11 1/15/2015

MIC vs. CPU

Number of cores

Clock speed (GHz)

SIMD width (bit)

DP Gflop/s/core

HW threads/core

• CPUs designed for all workloads, high single-thread performance

• MIC also general purpose, though optimized for number crunching

– Focus on high aggregate throughput via lots of weaker threads

– Regularly achieve >2x performance compared to dual E5 CPUs

MIC (SE10P) CPU (E5) MIC is…

61 8 much higher

1.01 2.7 lower

512 256 higher

16+ 21+ lower

4 1* higher

www.cac.cornell.edu 12 1/15/2015

Two Types of CPU/MIC Parallelism

• Threading (work-level parallelism)

– OpenMP, Cilk Plus, TBB, Pthreads, etc.

– It’s all about sharing work and scheduling

• Vectorization (data-level parallelism)

– “Lock step” Instruction Level Parallelization (SIMD)

– Requires management of synchronized instruction execution

– It’s all about finding simultaneous operations

• To fully utilize MIC, both types of parallelism need to be identified

and exploited

– Need 2–4+ threads to keep a MIC core busy (in-order execution stalls)

– Vectorized loops gain 8x performance on MIC!

– Important for CPUs as well: gain of 4x on Sandy Bridge

www.cac.cornell.edu 13 1/15/2015

Parallelism and Performance on MIC and CPU

Courtesy Intel

www.cac.cornell.edu 14 1/15/2015

• PCIe card with Intel

Xeon Phi™ (MIC)

• Host with dual Intel Xeon

“Sandy Bridge” (CPU)

Typical Configuration of a Stampede Node

Linux OS Linux

micro OS

PCIe

HCA

Access from network:

ssh <host> (OS)

ssh <coprocessor>

 (mOS)

Virtual IP*

service for MIC

www.cac.cornell.edu 15 1/15/2015

MIC Resembles a Compute Node

• Participates in network via established APIs

– TCP/IP, SSH, NFS; MIC has its own hostname

• Runs its own OS, you can log into it and open a Linux shell

• $HOME, $WORK, $SCRATCH are mounted on it

– You or your programs can read/write/execute files

• MPI infrastructure can launch jobs on it

But, there are some key differences

• SLURM and batch system don’t directly interact with MIC cards

• Minimal 3rd party software modules are installed on it

• The cluster is heterogeneous when MPI is used on MIC and hosts

www.cac.cornell.edu 16 1/15/2015

MIC Execution Models for Stampede

Native Execution

• Compile one executable for MIC architecture

 icc –O2 –mmic –openmp myprog.c –o myprog.mic

• Convenient to use .mic suffix for executables to serve as a

reminder

• Run directly on MIC coprocessor

– Use ssh or TACC’s convenient micrun launcher

c123-456$ ssh mic0

~ $ export OMP_NUM_THREADS=180

~ $ /path/to/myprog.mic

www.cac.cornell.edu 17 1/15/2015

MIC Execution Models for Stampede

Native Execution

• micrun launcher is designed to make running MIC executables

simple from host.

– Set specific environment variables with MIC_ prefix

– Receive proper return value

– Can be used explicitly via micrun, or implicitly

c123-456$ export MIC_OMP_NUM_THREADS=180

c123-456$ /path/to/myprog.mic

c123-456$ export MIC_OMP_NUM_THREADS=180

c123-456$ micrun /path/to/myprog.mic

www.cac.cornell.edu 18 1/15/2015

MIC Execution Models for Stampede

“Symmetric” Execution

• Message passing (MPI) on

CPUs and MICs alike

• Unified source code

• Code modifications optional

– Assign different work to

CPUs vs. MICs

– Multithread with OpenMP for

CPUs, MICs, or both

• Compile twice, 2 executables

– One for MIC, one for host

• Run in parallel using MPI

 Courtesy Scott McMillan, Intel

www.cac.cornell.edu 19 1/15/2015

MIC Execution Models for Stampede

Symmetric Execution

• Use ibrun.symm MPI launcher.

– Like ibrun, but adds capability of launching processes on MIC

coprocessors

– Use -c argument to specify host CPU executable, -m to specify MIC

executable

– Standard SLURM params (-N, -n) determine total number of compute

nodes, and host processes

– MIC_PPN environment variable to control number of MIC processes per

Phi card

– Only MIC_ prefixed environment variables are sent to MIC processes

• Right now, only Intel MPI implementation (impi) supported.

www.cac.cornell.edu 20 1/15/2015

MIC Execution Models for Stampede

Offload Execution

• Directives indicate data and

functions to send from CPU

to MIC for execution

• Unified source code

• Code modifications required

• Compile once

• Run in parallel using MPI

and/or scripting, if desired

Courtesy Scott McMillan, Intel

www.cac.cornell.edu 21 1/15/2015

MIC Execution Models for Stampede

Offload Execution

• Option 1: With compiler-assisted offload, you write code and offload

annotations

– No specific compiler flags needed, offload is implicit where markup is

encountered

– Offload code will automatically run on MIC at runtime if MIC is present,

otherwise host version is run

• Option 2: With automatic offload, you link to a library that can

perform offload operations (e.g. MKL)

– Stampede MKL is offload-capable, all you do is link to it (-lmkl)!

– Need to explicitly tell MKL to use offload at runtime via environment
variable MKL_MIC_ENABLE=1

www.cac.cornell.edu 22 1/15/2015

Which Execution Model?

• Native is very useful for performance testing, empirical analysis

– Works well for interactive jobs

– Re-compile and run!

• Use Symmetric to run existing MPI code on MIC only, or Host+MIC

– MIC coprocessor is just another node

– Using both Host and MIC creates a heterogeneous cluster

– Potential balancing issues, but these may possibly be addressed by

runtime parameters, not necessarily code changes

• Use automatic offload for code that uses an API implemented by

MKL (e.g., BLAS, LAPACK)

• Compiler-assisted offload can give fine-grained control: keep slow,

serial parts on CPU, run tight parallel loops on MIC or both

www.cac.cornell.edu 23 1/15/2015

Labs

• Interactive Launching

– Run a simple script on host, MIC interactively

– Use the script to see how environment variables are handled on each

• Native OpenMP

– Compare native performance on host to native performance on MIC for

the same OpenMP source code

– Note that this code is very friendly to MIC: floating-point intensive, light

on usage of memory, easy to multithread, easy to vectorize

www.cac.cornell.edu 24 1/15/2015

http://www.cac.cornell.edu/VW/MIC/launching.aspx
http://www.cac.cornell.edu/VW/MIC/openmp.aspx
http://www.cac.cornell.edu/VW/MIC/openmp.aspx

References

• Some information in this talk was gathered from presentations at the

TACC–Intel Highly Parallel Computing Symposium, Austin, Texas,

April 10–11, 2012: http://www.tacc.utexas.edu/ti-hpcs12.

• Stampede User Guide https://portal.tacc.utexas.edu/user-

guides/stampede

• Intel press materials http://newsroom.intel.com/docs/DOC-3126

• Intel MIC developer information http://software.intel.com/mic-

developer

www.cac.cornell.edu 25 1/15/2015

http://www.tacc.utexas.edu/ti-hpcs12
http://www.tacc.utexas.edu/ti-hpcs12
http://www.tacc.utexas.edu/ti-hpcs12
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
http://newsroom.intel.com/docs/DOC-3126
http://newsroom.intel.com/docs/DOC-3126
http://newsroom.intel.com/docs/DOC-3126
http://newsroom.intel.com/docs/DOC-3126
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer

(Previous Labs)

• Interactive Launching

– Run native code on host, MIC interactively

• Simple Symmetric MPI

– Use ibrun.symm to control number of jobs running on host and MIC,

verify that they’re running where you think they are

– If you use wget to download code, use the --no-check-

certificate option

Next week in advanced MIC:

• Non-trivial Symmetric example

– Use hybrid code (MPI+OpenMP) to calculate PI

– Investigate issues related to performance disparity between host and

coprocessor

www.cac.cornell.edu 26 1/15/2015

