
OpenMP

(with Labs)

Steve Lantz

Senior Research Associate

Cornell University Center for Advanced Computing (CAC)

slantz@cac.cornell.edu

Based on materials developed by Kent Milfeld at TACC

www.cac.cornell.edu

Workshop: High Performance Computing on Stampede, Jan. 14-15, 2015

mailto:your@cac.cornell.edu

What is OpenMP?

• OpenMP is an acronym for Open Multi-Processing

• An Application Programming Interface (API) for

developing parallel programs in shared-memory architectures

• Three primary components of the API are:

– Compiler Directives

– Runtime Library Routines

– Environment Variables

• De facto standard -- specified for C, C++, and FORTRAN

• http://www.openmp.org/ has the specification, examples, tutorials

and documentation

• OpenMP 4.0 specified July 2013

1/14/2015 www.cac.cornell.edu 2

http://www.openmp.org/
http://www.openmp.org/

OpenMP = Multithreading

• All about executing concurrent work (tasks)

– Tasks execute as independent threads

– Threads access the same shared memory (no message passing!)

– Threads synchronize only at barriers

• Simplest way to do multithreading – run tasks on multiple cores/units

– Insert OpenMP parallel directives to create tasks for concurrent threads

– So, shared-memory parallel programming is super-easy with OpenMP?

– Nope! Updates to a shared variable, e.g., need special treatment…

1/14/2015 www.cac.cornell.edu 3

 // repetitive work: OK

 #pragma omp parallel for

 for (i=0; i<N; i++)
 a[i] = b[i] + c[i];

 // repetitive updates: oops

 #pragma omp parallel for

 for (i=0; i<N; i++)
 sum = sum + b[i]*c[i];

Role of the Compiler

• OpenMP relies on the compiler to do the multithreading

– Compiler recognizes OpenMP directives, builds in appropriate code

• A special flag is generally required to enable OpenMP

– GNU: gcc -fopenmp

– Intel: icc -openmp

• On Stampede, extra flags may be required for Intel Xeon Phi

– May need to tell the Intel compiler to enable MIC instructions

– Build OpenMP code native to MIC: icc –openmp -mmic

– Offload marked sections to MIC: icc -openmp

– Must do multithreading to make full use of the Phi!

1/14/2015 www.cac.cornell.edu 4

Stampede OpenMP Use Cases

• Two distinct pools of shared memory exist on a Stampede node:

– 32 GB for the Intel Xeon E5 host processors

– 8 GB for the Intel Xeon Phi (MIC) coprocessor

• Thus, many possibilities exist for single-node OpenMP applications:

– Host only: compile for E5, run threads on E5 cores

– MIC only: compile natively for Phi, run threads on Phi cores

– Offload: compile so code runs on E5 but offloaded sections run on Phi

• More possibilities exist for multi-node MPI/OpenMP hybrid codes:

– Symmetric: compile separately for E5 and Phi, launch MPI tasks on

both, spawn local OpenMP threads for all tasks

– Offload: compile for E5, launch all MPI tasks on E5, offload some

OpenMP sections to Phi

1/14/2015 www.cac.cornell.edu 5

OpenMP Fork-Join Parallelism

• Programs begin as a single process: master thread

• Master thread executes until a parallel region is encountered

– Master thread creates (forks) a team of parallel threads

– Threads in team simultaneously execute tasks in the parallel region

– Team threads synchronize and terminate (join); master continues

1/14/2015 www.cac.cornell.edu 6

time
Serial

4 threads

Parallel
execution

Master Thread Multi-Threaded

Serial

4 threads

Parallel Serial

e.g.,

4-thread

execution

Parallel Region: C/C++ and Fortran

1/14/2015 www.cac.cornell.edu 7

1 #pragma omp parallel

2 { code block

3 a = work(...);

4 }

Line 1 Team of threads is formed at parallel region

Lines 2–3 Each thread executes code block and subroutine call, no

branching into or out of a parallel region

Line 4 All threads synchronize at end of parallel region (implied

barrier)

!$omp parallel

 code block

 call work(...)

!$omp end parallel

LAB: OMP Hello World

Core

M-1

Shared 0

1

2

M-1

:

Shared

Core

0

Core

1

Core

2

Core

M-1

Core

0

Core

1

Core

2

Hardware Model:

Multiple Cores

Software Model:

Threads in

Parallel Region

.. ..

= accessible by

 all threads

x

Shared

= private memory

 for thread x

Thread

0
Thread

1
Thread

2
Thread

M-1 a.out

M threads are usually mapped to M cores.
th

re
a
d
 p

ri
v
a
te

Thread

M
Thread

M+1
Thread

M+2
Thread

2M-1

For HyperThreading, 2 SW threads are

mapped to 2 HW threads on each core.

On the Intel Xeon Phi Coprocessors,

there are 4 HW threads/core.

OpenMP on Shared Memory Systems

OpenMP Directives

• OpenMP directives are comments in source code that specify

parallelism for shared-memory parallel (SMP) machines

• FORTRAN compiler directives begin with one of the sentinels
!OMP, COMP, or *$OMP – use !$OMP for free-format F90

• C/C++ compiler directives begin with the sentinel #pragma omp

1/14/2015 www.cac.cornell.edu 9

!$OMP parallel

 ...

!$OMP end parallel

!$OMP parallel do

 DO ...

!$OMP end parallel do

#pragma omp parallel

 {...

 }

#pragma omp parallel for

 for(...){...

 }

Fortran 90 C/C++

OpenMP Syntax

• OpenMP Directives: Sentinel, construct, and clauses

 #pragma omp construct [clause [[,]clause]…] C

 !$omp construct [clause [[,]clause]…] F90

• Example

 #pragma omp parallel private(i) reduction(+:sum) C

 !$omp parallel private(i) reduction(+:sum) F90

• Most OpenMP constructs apply to a “structured block”, that is, a

block of one or more statements with one point of entry at the top

and one point of exit at the bottom.

1/14/2015 www.cac.cornell.edu 10

OpenMP Constructs

1/14/2015 www.cac.cornell.edu 11

OpenMP language

“extensions”

parallel

control

data

access

synchron-

ization

• governs flow

of control in

the program

parallel

directive

• specifies

scoping of

variables

shared

private

reduction

clauses

• coordinates

execution of

threads

critical

atomic

barrier

directives

work-

sharing

• distributes

work among

threads

do/for

sections

single

directives

runtime

environment

• sets/gets environment

schedule

omp_set_num_threads()

omp_get_thread_num()

OMP_NUM_THREADS

OMP_SCHEDULE

clause, API, env. variables

control of

one task

• assigns

work to a

thread

task

directive

(OpenMP 3.0)

OpenMP Parallel Directives

1/14/2015 www.cac.cornell.edu 12

• Replicated – executed by all threads

• Worksharing – divided among threads

PARALLEL

 {code}

END PARALLEL

PARALLEL DO

 do I = 1,N*4

 {code}

 end do

END PARALLEL DO

PARALLEL

 {code1}

DO

 do I = 1,N*4

 {code2}

 end do

 {code3}

END PARALLEL

code code code code
I=N+1,2N

 code
I=2N+1,3N

 code

I=3N+1,4N

 code

I=1,N

code

code1 code1 code1 code1

I=N+1,2N

 code2
I=2N+1,3N

 code2

I=3N+1,4N

 code2

I=1,N

code2

code3 code3 code3 code3

Worksharing

Combined

Replicated

OpenMP Worksharing

1/14/2015 www.cac.cornell.edu 13

Use OpenMP directives to specify worksharing

in a parallel region, as well as synchronization

#pragma omp parallel

{

} // end parallel

Code block Thread action

for Worksharing

sections Worksharing

single One thread

master One thread

critical One thread at a time

parallel do/for

parallel sections

Directives can be combined,

if a parallel region has just

one worksharing construct.

#pragma omp

Worksharing Loop: C/C++

1/14/2015 www.cac.cornell.edu 14

1 #pragma omp parallel for

2 for (i=0; i<N; i++)

3 {

4 a[i] = b[i] + c[i];

5 }

6

Line 1 Team of threads formed (parallel region).

Lines 2–6 Loop iterations are split among threads.

Implied barrier at end of block(s) {}.

Each loop iteration must be independent of other iterations.

#pragma omp parallel

{

 #pragma omp for

 for (i=0; i<N; i++)

 {a[i] = b[i] + c[i];}

}

General form:

Worksharing Loop: Fortran

1/14/2015 www.cac.cornell.edu 15

1 !$omp parallel do

2 do i=1,N

3 a(i) = b(i) + c(i)

4 enddo

5 !$omp end parallel do

6

Line 1 Team of threads formed (parallel region).

Lines 2–5 Loop iterations are split among threads.

Line 5 (Optional) end of parallel loop (implied barrier at enddo).

Each loop iteration must be independent of other iterations.

!$omp parallel

!$omp do

 do i=1,N

 a(i) = b(i) + c(i)

 enddo

!$omp end parallel

General form:

OpenMP Clauses

• Directives dictate what the OpenMP thread team will do

• Examples:

– Parallel regions are marked by the parallel directive

– Worksharing loops are marked by do, for directives (Fortran, C/C++)

• Clauses control the behavior of any particular OpenMP directive

• Examples:

1. Scoping of variables: private, shared, default

2. Initialization of variables: copyin, firstprivate

3. Scheduling: static, dynamic, guided

4. Conditional application: if

5. Number of threads in team: num_threads

1/14/2015 www.cac.cornell.edu 16

Private, Shared Clauses

• In the following loop, each thread needs a private copy of temp

– The result would be unpredictable if temp were shared, because each

processor would be writing and reading to/from the same location

 !$omp parallel do private(temp,i) shared(A,B,C)

 do i=1,N

 temp = A(i)/B(i)

 C(i) = temp + cos(temp)

 enddo

 !$omp end parallel do

– A “lastprivate(temp)” clause will copy the last loop (stack) value of temp

to the (global) temp storage when the parallel DO is complete

– A “firstprivate(temp)” initializes each thread’s temp to the global value

1/14/2015 www.cac.cornell.edu 17

LAB: Worksharing Loop

Worksharing Results

1/14/2015 www.cac.cornell.edu 18

If work is completely

parallel, scaling is linear.

Scheduling, memory

contention and overhead

can impact speedup and

Gflop/s rate.

Speedup =

cputime(1) / cputime(N)

Work-Sharing on Production System

Lab Example 2

0

2

4

6

8

10

0 2 4 6 8

Threads

S
p

e
e

d
u

p

Series1

Series2

Work-Sharing on Production System

(Lab Example 2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9

CPUs

T
im

e
 (

s
e

c
.)

Actual

Ideal

Overhead to Fork a Thread Team

1/14/2015 www.cac.cornell.edu 19

Overhead for Parallel Team (-O3, -qarch/tune=pwr4)

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20

Threads

C
lo

c
k
 P

e
ri

o
d

s
 (

1
.3

G
H

z
 P

6
9
0
)

parallel

parallel_do

• Increases roughly linearly with number of threads

Merging Parallel Regions

1/14/2015 www.cac.cornell.edu 20

The !$OMP PARALLEL directive declares an entire region as parallel;

therefore, merging work-sharing constructs into a single parallel region

eliminates the overhead of separate team formations

!$OMP PARALLEL

 !$OMP DO

 do i=1,n

 a(i)=b(i)+c(i)

 enddo

 !$OMP END DO

 !$OMP DO

 do i=1,m

 x(i)=y(i)+z(i)

 enddo

 !$OMP END DO

!$OMP END PARALLEL

!$OMP PARALLEL DO

 do i=1,n

 a(i)=b(i)+c(i)

 enddo

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

 do i=1,m

 x(i)=y(i)+z(i)

 enddo

!$OMP END PARALLEL DO

Thread Memory Access: Race Conditions

• Every thread accesses “global” or shared memory

– All threads share the same address space except for private variables

– Thus, threads have no need to pass messages like MPI processes…

• But race conditions can occur with shared memory. Examples:

– The last writer “wins”, if no order is imposed on multiple writers

– The reader who “loses” to a writer will acquire the newly-updated value

• A race condition leads to unpredictable results!

– Avoid introducing one; usually it’s a bug which is hard to debug

• What do you do to prevent a race condition? Synchronize!

– Impose order with barriers (explicit/implicit synchronization)

– Use mutual exclusion (mutex) directives to protect critical sections,

where one thread must run at a time (at a performance penalty)

1/14/2015 www.cac.cornell.edu 21

Illustration of a Race Condition

• In a critical section, need mutual exclusion to get intended result

• The following OpenMP directives prevent this race condition:

#pragma omp critical – for a code block (C/C++)

#pragma omp atomic – for single statements

 1/14/2015 www.cac.cornell.edu 22

Thread 0 Thread 1 Value

read ← 0

increment 0

write → 1

read ← 1

increment 1

write → 2

Intended Possible…

Thread 0 Thread 1 Value

0

read ← 0

increment read ← 0

write → increment 1

write → 1

1

OpenMP Reduction

• Recall previous example of parallel dot product

– Simple parallel-for doesn’t work due to race condition on shared sum

– Best solution is to apply OpenMP’s reduction clause

– Doing private partial sums is fine too; add a critical section for sum of ps

1/14/2015 www.cac.cornell.edu 23

 // repetitive reduction: OK

 #pragma omp parallel for \
 reduction(+:sum)

 for (i=0; i<N; i++)
 sum = sum + b[i]*c[i];

 // repetitive updates: OK

 #pragma omp parallel \
 firstprivate(ps)

 {

 #pragma omp for

 for (i=0; i<N; i++)
 ps = ps + b[i]*c[i];

 #pragma omp critical

 sum = sum + ps; }

 // repetitive updates: oops

 #pragma omp parallel for

 for (i=0; i<N; i++)
 sum = sum + b[i]*c[i];

Runtime Library Functions

1/14/2015 www.cac.cornell.edu 24

omp_get_num_threads() Number of threads in current team

omp_get_thread_num()

Thread ID, {0: N-1}

omp_get_max_threads() Number of threads in environment,
OMP_NUM_THREADS

omp_get_num_procs() Number of machine CPUs

omp_in_parallel()

True if in parallel region & multiple threads

are executing

omp_set_num_threads(#) Changes number of threads for parallel

region, if dynamic threading is enabled

LAB: OMP Functions

Environment Variables, More Functions

1/14/2015 www.cac.cornell.edu 25

• To control the OpenMP runtime environment

• To enable dynamic thread count (not dynamic scheduling!)

omp_set_dynamic() Set state of dynamic threading: if equal to “true”,

omp_set_num_threads() controls thread count

omp_get_dynamic() True if dynamic threading is on

OMP_NUM_THREADS Set to permitted number of threads: this is the
value returned by omp_get_max_threads()

OMP_DYNAMIC TRUE/FALSE for enable/disable dynamic

threading (can also use the function below)

Loop Nesting in 3.0

1/14/2015 www.cac.cornell.edu 26

• OpenMP 3.0 supports nested parallelism, older implementations

may ignore the nesting and serialize inner parallel regions.

• A nested parallel region can specify any number of threads to be

used for the thread team, new id’s are assigned.

time

Serial
execution

Master Thread

Serial Nested Parallel Region

Additional Topics to Explore…

• Schedule clause: specify how to divide work among threads

 schedule(static) schedule(dynamic,M)

• Reduction clause: perform collective operations on shared variables

 reduction(+:asum) reduction(*:aprod)

• Nowait clause: remove the barrier at the end of a parallel section

 for ... nowait end do nowait

• Lock routines: make mutual exclusion more lightweight and flexible

 omp_init_lock(var) omp_set_lock(var)

1/14/2015 www.cac.cornell.edu 27

Some Programming Models for Intel MIC

• Intel Threading Building Blocks (TBB)

– For C++ programmers

• Intel Cilk Plus

– Task-oriented add-ons for OpenMP

– Currently for C++ programmers, may become available for Fortran

• Intel Math Kernel Library (MKL)

– Automatic offloading by compiler for some MKL features

– MKL is inherently parallelized with OpenMP

• OpenMP

– On Stampede, TACC expects that this is the most interesting

programming model for HPC users

1/14/2015 www.cac.cornell.edu 28

MIC Programming with OpenMP

• Compile with the Intel compiler (icc)

• OpenMP pragma is preceded by MIC-specific pragma

– Fortran: !dir$ omp offload target(mic) <...>

– C: #pragma offload target(mic) <...>

• All data transfer is handled by the compiler

– User control provided through optional keywords

• I/O can be done from within offloaded region

– Data can “stream” through the MIC; no need to leave MIC to fetch new

data from disk

– Also very helpful when debugging (print statements)

• Specific subroutines can be offloaded, including MKL subroutines

1/14/2015 www.cac.cornell.edu 29

Example 1

1/14/2015 www.cac.cornell.edu 30

use omp_lib ! OpenMP

integer :: n = 1024 ! Size

real, dimension(:,:), allocatable :: a ! Array

integer :: i, j ! Index

real :: x ! Scalar

allocate(a(n,n)) ! Allocation

!dir$ omp offload target(mic) ! Offloading

!$omp parallel do shared(a,n), & ! Parallel –

 private(x, i, j), schedule(dynamic) ! region

do j=1, n

 do i=j, n

 x = real(i + j); a(i,j) = x

#include <omp.h> /* C example */

 const int n = 1024; /* Size of the array */

 int i, j; /* Index variables */

 float a[n][n], x

#pragma offload target(mic)

#pragma omp parallel for shared(a), \

 private(x), schedule(dynamic)

 for(i=0;i<n;i++) {

 for(j=i;j<n;j++) {

 x = (float)(i + j); a[i][j] = x; }}

2-D array (a) is filled with

data on the coprocessor

Data handling is done

automatically by compiler

• Memory is allocated
on coprocessor for (a)

• Private variables
(i,j,x) are created

• Result is copied back

Example 2

1/14/2015 www.cac.cornell.edu 31

#pragma offload target(mic) //Offload region

#pragma omp parallel

{

 #pragma omp single /* Open File */

 {

 printf("Opening file in offload region\n");

 f1 = fopen("/var/tmp/mydata/list.dat","r");

 }

 #pragma omp for

 for(i=1;i<n;i++) {

 #pragma omp critical

 { fscanf(f1,"%f",&a[i]);}

 a[i] = sqrt(a[i]);

 }

 #pragma omp single

 {

 printf("Closing file in offload region\n");

 fclose (f1);

 }

}

I/O from offloaded region:

• File is opened and

closed by one thread
(omp single)

• All threads take turns

reading from the file
(omp critical)

Threads may also read in

parallel (not shown)

• Parallel file system

• Threads read parts

from different targets

Example 3

1/14/2015 www.cac.cornell.edu 32

! snippet from the caller...

! offload MKL routine to accelerator

!dir$ attributes offload:mic :: sgemm

!dir$ offload target(mic)

Call sgemm('N','N',n,n,n,alpha,a,n,b,n,beta,c,n)

! offload hand-coded routine with data clauses

!dir$ offload target(mic) in(a,b) out(d)

call my_sgemm(d,a,b)

! snippet from the hand-coded subprogram...

!dir$ attributes offload:mic :: my_sgemm

subroutine my_sgemm(d,a,b)

real, dimension(:,:) :: a, b, d

!$omp parallel do

do j=1, n

 do i=1, n

 d(i,j) = 0.0

 do k=1, n

 d(i,j) = d(i,j)+a(i,k)*b(k,j)

 enddo; enddo; endo

end subroutine

Two routines, MKL’s
sgemm and my_sgemm

• Both are called with
offload directive

• my_sgemm specifies

explicit in and out

data movement

Use attributes to

have routine compiled for

the coprocessor, or link

coprocessor-based MKL

LAB: Hand-Coding vs. MKL

Heterogeneous Threading, Sequential

1/14/2015 www.cac.cornell.edu 33

#pragma omp parallel

 {

#pragma omp single

 { offload(); }

#pragma omp for

 for(i=0; i<N; i++){...}

 }

!$omp parallel

 !$omp single

 call offload();

 !$omp end single

 !$omp do

 do i=1,N; ...

 end do

!$omp end parallel

C/C++

F90

offload

single

MPI process,

master thread

workshare

on cpu

wait

Generate

parallel region

idle

threads

Heterogeneous Threading, Concurrent

1/14/2015 www.cac.cornell.edu 34

wait

Generate

parallel region

offload

single

nowait

MPI process,

master thread

assist when

done in single

workshare

on cpu

#pragma omp parallel

 {

#pragma omp single nowait

 { offload(); }

#pragma omp for schedule(dynamic)

 for(i=0; i<N; i++){...}

 }

!$omp parallel

 !$omp single

 call offload();

 !$omp end single nowait

 !$omp do schedule(dynamic)

 do i=1,N; ...

 end do

!$omp end parallel

C/C++

F90

