
Vectorization

Aaron Birkland

Consultant

Cornell CAC

With contributions from TACC training materials.

High Performance Computing on Stampede

January 14, 2015.

1/14/2015 www.cac.cornell.edu 1

What is Vectorization?

• Hardware Perspective: Specialized instructions, registers, or

functional units to allow in-core parallelism for operations on arrays

(vectors) of data.

• Compiler Perspective: Determine how and when it is possible to

express computations in terms of vector instructions

• User Perspective: Determine how to write code in a manner that

allows the compiler to deduce that vectorization is possible.

1/14/2015 www.cac.cornell.edu 2

Vectorization: Hardware

• Goal: parallelize computations over vector arrays

• SIMD: Single Instruction Multiple Data

• Many instances of a single operation executing simultaneously

– Late ‘90s – present, commodity CPUs (x86, x64, PowerPC, etc)

– Small vectors, few cycles per instruction

– Newer CPUs (post Sandy Bridge) can pipeline some SIMD instructions

as well – best of both worlds.

1/14/2015 www.cac.cornell.edu 3

Vectorization via SIMD: Motivation

• CPU speeds reach a plateau

– Power limitations!

– Many “slow” transistors more efficient than fewer “fast” transistors

• Process improvements make physical space cheap

• Moore’s law, 2x every 18-24 months

• Easy to add more “stuff”

• One solution: More cores

– First dual core Intel CPUs appear in 2005

– Increasing in number rapidly (e.g. 8 in Stampede, 61 on MIC)

• Another Solution: More FPU units per core – vector operations

– First appeared on a Pentium with MMX in 1996

– Increasing in vector width rapidly (e.g. 512-bit [8 doubles]) on MIC

1/14/2015 www.cac.cornell.edu 4

Vectorization via SIMD: History

 Year Registers Instruction Set

~1997 80-bit MMX Integer SIMD (in x87 registers)

~1999 128-bit SSE1 SP FP SIMD (xMM0-8)

~2001 128-bit SSE2 DP FP SIMD (xMM0-8)

 --- 128-bit SSEx

~2010 256-bit AVX DP FP SIMD (yMM0-16)

~2012 512-bit IMCI (MIC)

~2015 512-bit AVX-512 (Skylake?)

1/14/2015 www.cac.cornell.edu 5

Vector Registers

1/14/2015 www.cac.cornell.edu 6

32-bit

Floating Point (FP)
0 127

64-bit

SSE/AVX 128

AVX-256

…
…

MIC-512

xmm ymm zmm

2/4

4/8

8/16

Speed

• True SIMD parallelism – Can take 1 cycle per floating point

computation on all values in a vector register.

– Exception: Slow operations like division, square roots

• Speedup (compared to no vector) proportional to vector width

– 128-bit SSE – 2x double, 4x single

– 256-bit AVX – 4x double, 8x single

– 512-bit MIC – 8x double, 16x single

• Hypothetical AVX example: 8 cores/CPU * 4 doubles/vector * 2.0

GHz = 64 Gflops/CPU DP

• Gets even better with FMA (fused multiply add), a=a+(b*c). Multiply

and add in the same clock cycle (Haswell+).

1/14/2015 www.cac.cornell.edu 7

Speed

• Clearly memory bandwidth is potential issue, we’ll explore this later

– Poor cache utilization, alignment, memory latency all detract from ideal

• SIMD is parallel, so Amdahl’s law is in effect!

– Serial/scalar portions of code or CPU are limiting factors

– Theoretical speedup is only a ceiling

1/14/2015 www.cac.cornell.edu 8

0

2

4

6

8

1 2 4 8 16

30%

60%

90%

Vector width

S
p
e
e
d
u
p

% vectorization

User Perspective

Let’s take a step back – how can we leverage this power

• Program in assembly

– Ultimate performance potential, but only for the brave

• Program in intrinsics

– Step up from assembly, useful but risky

• Let the compiler figure it out

– Relatively “easy” for user, “challenging” for compiler

– Less expressive languages like C make compiler’s job more difficult

– Compiler may need some hand holding.

• Link to an optimized library that does the actual work

– e.g. Intel MKL, written by people who know all the tricks.

– Get benefits “for free” when running on supported platform

1/14/2015 www.cac.cornell.edu 9

Vector-aware coding

• Know what makes vectorizable at all

– “for” loops (in C) or “do” loops (in fortran) that meet certain constraints

• Know where vectorization will help

• Evaluate compiler output

– Is it really vectorizing where you think it should?

• Evaluate execution performance

– Compare to theoretical speedup

• Know data access patterns to maximize efficiency

• Implement fixes: directives, compilation flags, and code changes

– Remove constructs that make vectorization impossible/impractical

– Encourage/force vectorization when compiler doesn’t, but should

– Better memory access patterns

1/14/2015 www.cac.cornell.edu 10

Writing Vector Loops

• Basic requirements of vectorizable loops:

– Countable at runtime

• Number of loop iterations is known before loop executes

• No conditional termination (break statements)

– Have single control flow

• No Switch statements

• ‘if’ statements are allowable when they can be implemented as masked

assignments

– Must be the innermost loop if nested

• Compiler may reverse loop order as an optimization!

– No function calls

• Basic math is allowed: pow(), sqrt(), sin(), etc

• Some Inline functions allowed

1/14/2015 www.cac.cornell.edu 11

Conceptualizing Compiler Vectorization

• Think of vectorization in terms of loop unrolling

– Unroll N interactions of loop, where N elements of data array fit into

vector register

1/14/2015 www.cac.cornell.edu 12

for (i=0; i<N;i++) {

 a[i]=b[i]+c[i];

}

for (i=0; i<N;i+=4) {

 a[i+0]=b[i+0]+c[i+0];

 a[i+1]=b[i+1]+c[i+1];

 a[i+2]=b[i+2]+c[i+2];

 a[i+3]=b[i+3]+c[i+3];

}

Load b(i..i+3)

Load c(i..i+3)

Operate b+c->a

Store a

Compiling Vector loops

• Intel Compiler:

– Vectorization starts at optimization level –O2

– Will default to SSE instructions and 128-bit vector width

• use –xAVX to use AVX and 256-bit vector width. Only runs on newer CPUs

– Can embed SSE and AVX instructions in the same binary with –axAVX

• Will run AVX on CPUs with AVX support, SSE otherwise

– -vec-report=<n> for a vectorization report

• GCC

– Vectorization is disabled by default, regardless of optimization level

– Need –ftree-vectorize flag, combined with optimization > –O2

– SSE by default, -mavx -march=corei7-avx for AVX

– -ftree-vectorizer-verbose for a vectorization report

1/14/2015 www.cac.cornell.edu 13

Lab: Simple Vectorization

In this lab you will

• Use the Intel compiler to create vectorized with non-vectorized code

• Compare the performance of vectorized vs non-vectorized code

• Compare performance with different vector widths.

• Take an initial look at compiler vectorization reports

• Bonus: What is the vector efficiency (% vector instructions) of the

test code? Using Amdal’s law P =
1

𝑆
−1

1

𝑛
−1

 where P is % parallel (e.g.

% vectorized), S is speedup, n is vector length in number of

floats/doubles

1/14/2015 www.cac.cornell.edu 14

Lab: Simple Vectorization

Notes:

• One MIC thread can only use 50% of a core

• Amdahl’s law for 90% vectorized predicts (1x, 1.8x, 3x, 4.7x)

1/14/2015 www.cac.cornell.edu 15

Compile Options Time Speedup

-no-vec –O3 .67s 1x

-O3 .37s 1.8x

-O3 –xAVX (or –xhost) .25s 2.7x

Compile Options Time Speedup

-no-vec -mmic -O3 13.22s 1x

-mmic -O3 2.78s 4.8x

Host

CPU

MIC

Challenge: Loop Dependencies

• Vectorization changes the order of computation compared to

sequential case

• Compiler must be able to prove that vectorization will produce

correct result.

• Need to consider independence of unrolled loop operations –

depends on vector width

• Compiler performs dependency analysis

1/14/2015 www.cac.cornell.edu 16

Loop Dependencies: Read After Write

Consider the loop:

a= {0,1,2,3,4}

b = {5,6,7,8,9}

Applying each operation sequentially:

a[1] = a[0] + b[1] → a[1] = 0 + 6 → a[1] = 6

a[2] = a[1] + b[2] → a[2] = 6 + 7 → a[2] = 13

a[3] = a[2] + b[3] → a[3] = 13 + 8 → a[3] = 21

a[4] = a[3] + b[4] → a[4] = 21 + 9 → a[4] = 30

a = {0, 6, 13, 21, 30}

1/14/2015 www.cac.cornell.edu 17

for(i=1; i<N; i++)

 a[i] = a[i-1] + b[i];

Loop Dependencies: Read After Write

Consider the loop:

a= {0,1,2,3,4}

b = {5,6,7,8,9}

Applying each operation sequentially:

a[1] = a[0] + b[1] → a[1] = 0 + 6 → a[1] = 6

a[2] = a[1] + b[2] → a[2] = 6 + 7 → a[2] = 13

a[3] = a[2] + b[3] → a[3] = 13 + 8 → a[3] = 21

a[4] = a[3] + b[4] → a[4] = 21 + 9 → a[4] = 30

a = {0, 6, 13, 21, 30}

1/14/2015 www.cac.cornell.edu 18

for(i=1; i<N; i++)

 a[i] = a[i-1] + b[i];

Loop Dependencies: Read After Write

Now let’s try vector operations:

a= {0,1,2,3,4}

b = {5,6,7,8,9}

Applying vector operations, i={1,2,3,4}:

a[i-1] = {0,1,2,3} (load)

b[i] = {6,7,8,9} (load)

{0,1,2,3} + {6,7,8,9} = {6, 8, 10, 12} (operate)

a[i] = {6, 8, 10, 12} (store)

a = {0, 6, 8, 10, 12} ≠ {0, 6, 13, 21, 30} NOT VECTORIZABLE

1/14/2015 www.cac.cornell.edu 19

for(i=1; i<N; i++)

 a[i] = a[i-1] + b[i];

Loop Dependencies: Write after Read

Consider the loop:

a= {0,1,2,3,4}

b = {5,6,7,8,9}

Applying each operation sequentially:

a[0] = a[1] + b[0] → a[0] = 1 + 5 → a[0] = 6

a[1] = a[2] + b[1] → a[1] = 2 + 6 → a[1] = 8

a[2] = a[3] + b[2] → a[2] = 3 + 7 → a[2] = 10

a[3] = a[4] + b[3] → a[3] = 4 + 8 → a[3] = 12

a = {6, 8, 10, 12 , 4}

1/14/2015 www.cac.cornell.edu 20

for(i=0; i<N; i++)

 a[i] = a[i+1] + b[i];

Loop Dependencies: Write after Read

Now let’s try vector operations:

a= {0,1,2,3,4}

b = {5,6,7,8,9}

Applying vector operations, i={1,2,3,4}:

a[i+1] = {1,2,3,4} (load)

b[i] = {5,6,7,8} (load)

{1,2,3,4} + {5,6,7,8} = {6, 8, 10, 12} (operate)

a[i] = {6, 8, 10, 12} (store)

a = {0, 6, 8, 10, 12} = {0, 6, 8, 10, 12} VECTORIZABLE

1/14/2015 www.cac.cornell.edu 21

for(i=0; i<N; i++)

 a[i] = a[i+1] + b[i];

Loop Dependencies

• Read After Write

– Also called “flow” dependency

– Variable written first, then read

– Not vectorizable

• Write after Read

– Also called “anti” dependency

– Variable read first, then written

– vectorizable

1/14/2015 www.cac.cornell.edu 22

for(i=1; i<N; i++)

 a[i] = a[i-1] + b[i];

for(i=0; i<N-1; i++)

 a[i] = a[i+1] + b[i];

Loop Dependencies

• Read after Read

– Not really a dependency

– Vectorizable

• Write after Write

– a.k.a “output” dependency

– Variable written, then re-written

– Not vectorizable

1/14/2015 www.cac.cornell.edu 23

for(i=0; i<N; i++)

 a[i] = b[i%2] + c[i];

for(i=0; i<N; i++)

 a[i%2] = b[i] + c[i];

Loop Dependencies: Aliasing

• In C, pointers can hide data dependencies!

– Memory regions they point to may overlap

• Is this safe?:

– .. Not if we give it the arguments compute(a, a+1, c);

• Effectively, b is really a[i-1] → Read after Write dependency

• Compilers can usually cope, add bounds checking tests (overhead)

1/14/2015 www.cac.cornell.edu 24

void compute(double *a,

 double *b, double *c) {

 for (i=1; i<N; i++) {

 a[i]=b[i]+c[i];

 }

}

Vectorization Reports

• Shows which loops are or are not vectorized, and why

• Intel: -vec-report=<n>

– 0: None

– 1: Lists vectorized loops

– 2: Lists loops not vectorized, with explanation

– 3: Outputs additional dependency information

– 4: Lists loops not vectorized, without explanation

– 5: Lists loops not vectorized, with dependency information

• Reports are essential for determining where the compiler finds a

dependency

• Compiler is conservative, you need to go back and verify that there

really is a dependency.

1/14/2015 www.cac.cornell.edu 25

Loop Dependencies: Vectorization Hints

• Compiler must prove there is no data dependency that will affect

correctness of result

• Sometimes, this is impossible

– e.g. unknown index offset, complicated use of pointers

• Intel compiler solution: IVDEP (Ignore Vector DEPendencies) hint.

– Tells compiler “Assume there are no dependencies”

1/14/2015 www.cac.cornell.edu 26

subroutine

vec1(s1,M,N,x)

…

!DEC$ IVDEP

do i = 1,N

 x(i) = x(i+M) + s1

end do

void vec1(double s1,int M,

 int N,double *x) {

…

#pragma IVDEP

for(i=0;i<N;i++) x[i]=x[i+M]+s1;

Compiler hints affecting vectorization

• For Intel compiler only

• Affect whether loop is vectorized or not

• #pragma ivdep

– Assume no dependencies.

– Compiler may vectorize loops that it would otherwise think are not

vectorizable

• #pragma vector always

– Always vectorize if technically possible to do so.

– Overrides compiler’s decision to not vectorize based upon cost

• #pragma novector

– Do not vectorize

1/14/2015 www.cac.cornell.edu 27

Loop Dependencies: Language Constructs

• C99 introduced ‘restrict’ keyword to language

– Instructs compiler to assume addresses will not overlap, ever

• May need compiler flags to use, e.g. –restrict, -std=c99

1/14/2015 www.cac.cornell.edu 28

void compute(double * restrict a,

 double * restrict b, double * restrict c) {

 for (i=1; i<N; i++) {

 a[i]=b[i]+c[i];

 }

}

Cache and Alignment

 ymm2 ymm0 ymm1

• Optimal vectorization requires concerns beyond SIMD unit!

– Registers: Alignment of data on 128, 256 bit boundaries

– Cache: Cache is fast, memory is slow

– Memory: Sequential access much faster than random/strided

1/14/2015 www.cac.cornell.edu 29

nnn y

y

y

y

x

x

x

x

a

z

z

z

z

3

2

1

3

2

1

3

2

1

*

x1, x2, x3, … xn

Cache

y1, y2, y3, … yn a

z1, z2, z3, … zn

Strided access

• Fastest usage pattern is “stride 1”: perfectly sequential

• Best performance when CPU can load L1 cache from memory in

bulk, sequential manner

• Stride 1 constructs:

– Iterating Structs of arrays vs arrays of structs

– Multi dimensional array:

• Fortran: stride 1 on “inner” dimension

• C/C++: Stride 1 on “outer” dimension

1/14/2015 www.cac.cornell.edu 30

do j = 1,n; do i=1,n

 a(i,j)=b(i,j)*s

enddo; endo

for(j=0;j<n;j++)

for(i=0;i<n;i++)

 a[j][i]=b[j][i]*s;

Strided access

• Striding through memory

reduces effective memory

bandwidth!

– For DP, roughly 1-stride/8

• Worse than non-aligned

access. Lots of memory

operations to populate a

cache line, vector register

1/14/2015 www.cac.cornell.edu 31

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8T
im

e
 (

G
ig

a
 C

lo
c
k
 P

e
ri

o
d

s
)

Stride

Cost of
Memory-Strided Summation

do i = 1,4000000*istride, istride

 a(i) = b(i) + c(i) * sfactor

 enddo

Diagnosing Cache and Memory deficiencies

• Obviously bad stride patterns may prevent vectorization at all:

– In vector report: "vectorization possible but seems inefficient“

• Otherwise, may be difficult to detect

– No obvious assembly instructions, other than a proliferation of loads and

stores

– Vectorization performance farther away from ideal than expected

• Profiling tools can help

– PerfExpert (available at TACC)

– Visualize CPU cycle waste spent in data access (L1 cache miss, TLB

misses, etc)

1/14/2015 www.cac.cornell.edu 32

Conclusion

• Vectorization occurs in tight loops “automatically” by the compiler

• Need to know where vectorization should occur, and verify that

compiler is doing that.

• Need to know if a compiler’s failure to vectorize is legitimate

– Fix code if so, use #pragma if not

• Need to be aware of caching and data access issues

– Very fast vector units need to be well fed.

1/14/2015 www.cac.cornell.edu 33

