
Vectorization Lab

High Performance Computing on Stampede

Aaron Birkland
Cornell Center for Advanced Computing

Jan 14, 2014

1 Simple Vectorization

This exercise serves as an introduction to using a vectorizing compiler. We will work with
code containing a tight loop that should be easily vectorizable. Our goal is to try out various
compiler options and compare vectorized with non-vectorized code on Stampede.

1. Unpack the lab materials into your home directory, and change into the vector direc-
tory.

$ cd

$ tar xvf ~tg459572/LABS/vector.tar

$ cd vector

2. We noted that the Intel compiler starts applying vectorization with -O2. Let’s see if
we can view a vectorization report to see what it did.

$ icc simple.c -vec-report=2 -O3 -o simple

simple.c(19): (col. 2) remark: LOOP WAS VECTORIZED.

simple.c(26): (col. 3) remark: LOOP WAS VECTORIZED.

simple.c(25): (col. 5) remark: loop was not vectorized: not inner loop.

This shows that two loops were vectorized: The initial value loading loop, and our
computation loop.

3. Now that the compiler has told us that it vectorized our loops, let’s verify this by
compiling with vectorization disabled.

$ icc simple.c -no-vec -vec-report=2 -O3 -o simple_no_vec

Cornell Center for Advanced Computing 1



Notice that all the vectorization reports disappeared, even though we specified report-
ing as a compile option. When vectorization is disabled, the reports disappear.

4. As mentioned in the talk, the Intel compiler will use SSE (128-bit) instructions by
default. Compile the code with vectorization enabled, but add the argument -xAVX

to the compilation flags to use 256-bit AVX. Name your executable simple avx.

5. Now compile vectorized and non-vectorized variants of the code to run natively on the
MIC coprocessor. Use the compile flag -mmic to compile for the MIC architecture.

$ icc simple.c -mmic -O3 -o simple.mic

$ icc simple.c -no-vec -mmic -O3 -o simple_no_vec.mic

6. The simple.sh batch file will record the execution time each of our vectorized and
non-vectorized applications. Take a look at the batch script, then run it and examine
the output.

$ sbatch simple.sh

$ cat slurm-951653.out

simple_no_vec: 0.67

simple 0.37

simple_avx 0.25

simple_no_vec.mic 13.22

simple.mic 2.78

7. Lastly, the intel compiler flag -xhost can be used to automatically detect all the
advanced features of the hardware (like AVX). The downside is that the resulting
binaries may only be run on machines with an architecture similar to Stampede (i.e.
with 256-bit AVX instructions). Try compiling with -xhost and see if the runtime is
similar to the -axAVX example from before.

As we have seen, vectorization on the Intel compiler can be simple and straightforward.
Correlating vectorization reports with the source code can be a little bit tricky, especially
if the compiler implements optimizations such as loop reordering. However, as long as we
have some sense of what the compiler ought to be doing, this can usually be figured out
with a little effort.

2 Assisted Vectorization

This lab involves code that contains a data dependency. We will use this to further explore
vectorization reports, then use directives to override the compiler’s default behaviour.

Cornell Center for Advanced Computing 2



2.1 Advanced Vector Reports

We will use vector reports to examine problems the compiler is having when trying to
vectorize code.

• First, load the latest intel compiler

$ module load intel/14.0.1.106

• Compile the dependency program

$ icc -xhost -O3 -vec-report=2 dependency.c -o dependency

In the report, you will see that the compiler has vectorized some loops, but not others.
Pay particular attention to the line regarding data dependency:

dependency.c(33): (col. 2) remark: loop was not vectorized: existence of

vector dependence.

• Try to compile with different vectorization report options. The Intel compiler expects
values ranging from 0 to 5. They do not necessarily progress in order of detail. Try
each level and note the differences. Is any report level particularly enlightening?

For example, trying option 4 might look like:

$ icc -xhost -O3 -vec-report=4 dependency.c -o dependency

dependency.c(33): (col. 2) remark: loop was not vectorized: not inner loop.

dependency.c(33): (col. 2) remark: loop was not vectorized: existence of

vector dependence.

dependency.c(47): (col. 6) remark: loop was not vectorized: not inner loop.

dependency.c(48): (col. 4) remark: loop skipped: multiversioned.

The vector report listed several ANTI and FLOW dependencies around line 33. In the code,
this is the line where compute() is called. Can you guess why the compiler chose line 33?
Also, why did the compiler find multiple kinds of dependencies?

2.2 Compiler directives

We will now use compiler directives to force the compiler to assume there is no data depen-
dency in our loop.

• dependency pragma.c is identical to our original dependency code, except for the
addition of #pragma directives. Look at the source and find any directives.

Cornell Center for Advanced Computing 3



• Compile the dependency pragma code:

$ icc -xhost -O3 -vec-report=3 dependency_pragma.c -o dependency_pragma

Compare the vectorization reports of dependency vs dependency pragma. Do you no-
tice where loop was not vectorized has been replaced by LOOP WAS VECTORIZED?

• Run dependency and dependency pragma to see if the vector hints increased perfor-
mance:

$ time dependency

Given value of 0

Sum is: 724215229516.70

real 0m.161s

user 0m.161s

sys 0m0.001s

$ time dependency_pragma

Given value of 0

Sum is: 421476947100.00

real 0m0.067s

user 0m0.067s

sys 0m0.001s

We more than doubled our performance by allowing our inner loop to be vectorized!

Notice that the Sum results are quite different! Our program gave a significantly
different result with vectorization enabled. This is because our loop to exhibits a
“read-after-write” or “flow” dependency. In dependency pragma, the compiler was
told to ignore the possibility of dependencies, so it produces an incorrect result. This
is why correcting the compiler by way of compiler directives can be tricky - you need
to be absolutely sure that vectorization will not produce a mathematically incorrect
results if you tell it to ignore dependencies.

Cornell Center for Advanced Computing 4


