
Pro�ling and Debugging Lab

Parallel Computing on Stampede

Aaron Birkland

Cornell Center for Advaned Computing

Ot 30, 2013

GDB debugging

This lab exerise serves as an introdution to debugging via GDB (The GNU Debugger).

While one may normally wish to debug within an IDE using a omfortable GUI, GDB

and its ommand-line interfae is lightweight, powerful, installed virtually everywhere, and

usable with little fuss. It is a useful \least ommon denominator" to know.

This lab will fous around a poorly program \sramble" ontaining several bugs. This

program is supposed to aept a user-provided text string and print a srambled represen-

tation of this string to STDOUT.

Setup

To begin, we will unpak the lab materials and ompile the example program.

1. Unpak the lab materials into your home diretory if you haven't done so already.

$ d

$ tar xvf ~tg459572/LABS/profile_debug.tar

$ d profile_debug

2. Compile the sramble program. We are intentionally starting o� without speifying

debug symbols.

$ g sramble. -o sramble

3. Run the sramble program with some text to sramble as an argument. It should

rash with a segmentation fault.

$./sramble "sramble me"

Segmentation fault (ore dumped)

Cornell Center for Advaned Computing 1

Analyzing ore dumps

When a program rashes unexpetedly, the OS an dump a opy of its urrent memory state

into a ore �le. This �le an be analyzed later with GDB. Typially, a user an set a size

limit for ore dumps. This is useful to prevent serious disk usage mishaps for programs that

use large amounts of memory. On Stampede, the default is 0, i.e. it will not dump a ore

grater than zero bytes large unless you diret otherwise.

1. In the bash shell (default on Stampede), use ulimit -a to see default values. (If you

swithed to C shell, use limit instead)

$ ulimit -a

ore file size (bloks, -) 0

data seg size (kbytes, -d) unlimited

sheduling priority (-e) 0

file size (bloks, -f) unlimited

pending signals (-i) 514620

max loked memory (kbytes, -l) 64

max memory size (kbytes, -m) unlimited

open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200

real-time priority (-r) 0

stak size (kbytes, -s) unlimited

pu time (seonds, -t) unlimited

max user proesses (-u) 150

virtual memory (kbytes, -v) 8388608

file loks (-x) unlimited

As you an see, the default is 0.

2. Change the ore dump size to unlimited. (on C shell use limit oredumpsize

unlimited)

$ ulimit - unlimited

3. Run the sramble program again and look for the dump �le. Its name should be some-

thing like ore.PID where PID is the proess ID number. For example, ore.11781.

$./sramble "sramble me"

Segmentation fault (ore dumped)

4. Run GDB using the exeutable and ore �le as arguments. This will tell the debugger

to analyze the given memory image reated by the given exeutable.

Cornell Center for Advaned Computing 2

$ gdb sramble ore.29016

You will see some text ash by saying how the program was invoked and how it

rashed (Segmentation fault), ending up at a gdb prompt (gdb). Note the various

\no debugging symbols found" messages.

Reading symbols from /home1/01871/apb18/profile_debug/sramble...

(no debugging symbols found)...done.

[New Thread 29016℄

Reading symbols from /lib64/lib.so.6...(no debugging symbols found)...done.

Loaded symbols for /lib64/lib.so.6

Reading symbols from /lib64/ld-linux-x86-64.so.2...

(no debugging symbols found)...done.

Loaded symbols for /lib64/ld-linux-x86-64.so.2

Reading symbols from /lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so...

Reading symbols from

/usr/lib/debug/lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so.debug...done.

Loaded symbols for /lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so

Core was generated by `./sramble sramble me'.

Program terminated with signal 11, Segmentation fault.

#0 0x00000000004005b1 in sramble ()

Missing separate debuginfos, use: debuginfo-install glib-2.12-1.80.el6_3.6.x86_64

(gdb)

5. To �gure out where the program rashed, print out a stak baktrae. At the (gdb)

prompt, type in bt to print a stak baktrae.

(gdb) bt

#0 0x000000000040055e in sramble ()

#1 0x00000000004005b6 in main ()

As you an see, the output is somewhat helpful. We an see the memory addresses

of our stak frames, as well as the name of the funtions they represent. So we know

that our program rashed somewhere in sramble(), but not muh else. Look at the

ode. Intuitively, strlen() ould be a problem (is the string null terminated?), as

ould array bounds or pointers. We don't have enough information to tell.

6. Try to print out a variable. Unfortunately, this does not work. Our problems stem

from the fat that we forgot to ompile with debugging symbols. We will orret this

in the next exerise.

(gdb) print i

No symbol "i" in urrent ontext.

Cornell Center for Advaned Computing 3

7. Exit GDB by typing in q at the prompt.

(gdb) q

Debugging symbols

When we ompile with debugging symbols enabled, the debugger beomes muh more useful,

as it an orrelate our soure ode with funtions and variables present in memory.

1. Compile the program with debugging symbols and no optimization (-O0, Capital O

followed by number 0). Aggressive optimization will break the orrelation between

the soure ode and the native mahine instrutions, ompliating the debugging pro-

ess.

$ g -g -O0 sramble. -o sramble

2. Run the program, allow it to dump ore when it segfaults, and load the new ore �le

into gdb as before.

$./sramble "sramble me"

Segmentation fault (ore dumped)

$ gdb sramble ore.28616

Reading symbols from /home1/01871/apb18/profile_debug/sramble...done.

[New Thread 30715℄

Reading symbols from /lib64/lib.so.6...(no debugging symbols found)...done.

Loaded symbols for /lib64/lib.so.6

Reading symbols from /lib64/ld-linux-x86-64.so.2...(no debugging symbols found)...done.

Loaded symbols for /lib64/ld-linux-x86-64.so.2

Reading symbols from /lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so...

Reading symbols from /usr/lib/debug/lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so.debug...done.

done.

Loaded symbols for /lib/modules/2.6.32-279.14.1.el6.x86_64/vdso/vdso.so

Core was generated by `./sramble sramble me'.

Program terminated with signal 11, Segmentation fault.

#0 0x00000000004005b1 in sramble (message=0x7fff6e6e6e67 "./sramble",

buffer=0x400728 "") at sramble.:9

9 buffer[i℄ = ((message[i℄ + i) % 93) + 33;

Missing separate debuginfos, use: debuginfo-install glib-2.12-1.80.el6_3.6.x86_64

(gdb)

Muh better! Even without doing a bak trae, we see exatly where the rash o-

urred, line 9 of sramble.

3. Print out some variables to help us �gure out what is going on at line 9. By inspeting

i, message, and buffer, an you �gure out a possible ause of the rash?

Cornell Center for Advaned Computing 4

(gdb) print i

$1 = 0

(gdb) print buffer

$2 = 0x400728 ""

(gdb) print message

$3 = 0x7fff6e6e6e67 "./sramble"

4. We see that message has a valid string, and i has not been inremented yet, so

it is likely that something is wrong with writing to buffer. As it turns out, we

mistakenly initiated it with an unmodi�able string literal on line 16. Change line 16

from har *buffer = ""; to har buffer[16℄; (not an ideal �x, as it opens the

door to di�erent kinds of bugs, but it will �x our segfault). Name the �xed exeutable

sramble fixed. Compile and run. The solution is in sramble fixed. if you need

it.

$ g -g -O0 sramble. -o sramble_fixed

$./sramble_fixed "sramble me"

OQ9*:*7-82-59I77

It worked! we �xed our bug.

Cornell Center for Advaned Computing 5

