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abstract: Many parasites infect multiple species and persist
through a combination of within- and between-species transmis-
sion. Multispecies transmission networks are typically constructed
at the species level, linking two species if any individuals of those
species interact. However, generalist species often consist of special-
ized individuals that prefer different subsets of available resources,
so individual- and species-level contact networks can differ system-
atically. To explore the epidemiological impacts of host specializa-
tion, we build and study a model for pollinator pathogens on plant-
pollinator networks, in which individual pollinators have dynamic
preferences for different flower species. We find that modeling and
analysis that ignore individual host specialization can predict die-
off of a disease that is actually strongly persistent and can badly
over- or underpredict steady-state disease prevalence. Effects of in-
dividual preferences remain substantial whenever mean preference
duration exceeds half of themean time from infection to recovery or
death. Similar results hold in a model where hosts foraging in differ-
ent habitats have different frequencies of contact with an environ-
mental reservoir for the pathogen. Thus, even if all hosts have the
same long-run average behavior, dynamic individual differences
can profoundly affect disease persistence and prevalence.

Keywords: infectious disease, model, specialization, contact net-
work, plant-pollinator network.

Introduction

Most parasites infect multiple host species (e.g., Fenton
et al. 2015; Levi et al. 2016), and pathogen persistence
involves spread within and among multiple host species
differing in susceptibility and infectiousness, as well as
possibly free-living populations in environmental reser-
voirs. Modeling of multispecies disease systems for fore-

casting and control is typically based on species-level con-
tact networks and rates (e.g., Holt et al. 2003; Dobson
2004; Zhuang et al. 2013; Fenton et al. 2015). Community
interaction networks are typically constructed at the spe-
cies level or above. For example, a food web will link spe-
cies (or higher-level taxa) i and j if any taxon i individual
eats a taxon j individual, and a network describing disease
spread among multiple hosts and vectors will link host
species i and vector species j if there are any contacts be-
tween two individuals of those species.
However, generalist species in a wide variety of taxa of-

ten consist of individuals that are far more specialized with
regard to what they eat or where they forage (e.g., Bolnick
et al. 2003, 2007; Estes et al. 2003; Woo et al. 2008; New-
some et al. 2009; Vander Zanden et al. 2010; Araújo et al.
2011; Matich et al. 2011; de Lima et al. 2019; Maldonado
et al. 2019). Individual diet and foraging specialization
may be advantageous if it facilitates development of exper-
tise at detecting or efficiently exploiting a subset of available
resources (Tinker et al. 2008; Dukas 2019). Specialized
preferences may be labile so that an individual’s lifetime
niche breadth is much broader than their niche breadth
at any one time (e.g., Heinrich 1979; Novak and Tinker
2015; Russell et al. 2017; Szigeti et al. 2019), or they may
be long-lasting (e.g., bumblebees’ floral preferences can last
a month or longer; Heinrich 1976), even passing from par-
ent to offspring (e.g., Estes et al. 2003). However, relatively
few studies have quantified the temporal consistency of in-
traspecific specializations—how often and to what degree
individual specializations change (Novak and Tinker 2015).
In this article, we ask how predictions of pathogen per-

sistence or extinction, determined by the pathogen repro-
duction number R0, and of steady-state prevalence for an
endemic disease are affected if the modeling and analysis
ignore the existence of individual-level specialized food or
habitat preferences, either transient or long-lasting. The
answer, in brief, is “a whole lot.”
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The motivation and empirical context for this study is
disease spread in communities of pollinating insects, es-
pecially bees, and the flowers they visit to collect nectar
and pollen. Populations of many bees and other pollinators
are in decline, and a variety of emerging or reemergent
pathogens are a likely contributing factor (Goulson et al.
2015). For example, deformed wing virus is a major threat
to honeybees worldwide (McMahon et al. 2016; Wilfert
et al. 2016), with recent evidence of spillover to wild bum-
blebees (Alger et al. 2019; Manley et al. 2019). The try-
panosomeCrithidia bombi is a widespread virulent parasite
in multiple bumblebee species (Koch and Schmid-Hempel
2011), and virulent fungal pathogens, such as Ascosphaera
spp., attack many wild megachilid bees, such as Osmia spp.
(Evison et al. 2012; Evison and Jensen 2018). Many patho-
gens are shared among multiple bee species (Goulson
2009; Evison et al. 2012; Ravoet et al. 2014; McMahon
et al. 2015). For the pathogens that we are studying empir-
ically and model here (including Crithidia), flowers act as
the disease vectors. Transmission among foraging insect
hosts is primarily fecal-oral, occurring through shared use of
flowers, where uninfected insects can encounter pathogen-
laden feces deposited recently by an infected host of the same
or another species (Durrer and Schmid-Hempel 1994; Ruiz-
Gonzalez and Brown 2006; Singh et al. 2010; McArt et al.
2014; Graystock et al. 2015; Figueroa et al. 2019).
It has long been known that individual pollinators are

often more specialized than their species as a whole, vis-
iting within some time window only or primarily a small
subset of the flower species visited frequently by their spe-
cies. Heinrich (1979) referred to this as “majoring” in bum-
blebees. Szigeti et al. (2019, p. 649) similarly described for-
aging butterflies as “sequential specialist, i.e. short-term
specialist and long-term generalist,” because preferences
were always narrow but changed over individuals’ lifetimes.
Individual pollinators may even specialize on a subset of
individuals within the species that they visit (Dupont et al.
2011, 2014). In a montane plant-pollinator network, Tur
et al. (2014) found that individual pollinators visited on av-
erage only about half of the plant species to which their spe-
cies was linked in the species-level contact network, imply-
ing that the species-level network would exaggerate the
potential for pollen flow.
The same is likely true for spread of an endemic disease

across a network, analogous to how spatial population
structure typically impedes disease spread, such that a
within-group pathogen reproduction numberR0 well above
one is generally required for substantial cross-group infec-
tion (Cross et al. 2005, 2007). However, we hypothesized
that individual-level specialization would have the oppo-
site effect on disease establishment and persistence. Hosts
currently specializing on flowers that they readily infect and
acquire infection fromwould constitute a subnetworkwhere

the disease could persist, and from those hosts and flowers
it could spill over to other components of the network.
To test this hypothesis, we construct and study a simple

model for pathogen transmission in a pollination net-
work in which pollinator host individuals are sequential
specialists, visiting only one flower species for a block of
time and then switching to another such species at a char-
acteristic switching rate. Viewed broadly, our model is a
dynamic contact network with heterogeneous individuals
(e.g., Fefferman and Ng 2007; Volz and Meyers 2007;
Holme and Saramaki 2012; Valverde et al. 2016; White
et al. 2017, 2018) and with subgroup structure, analogous
in some ways to spatial structure, resulting from species
differing in their average contact rates with other species.
However, the distinctive structure and rewiring patterns
resulting from sequential specialization lead to distinctive
and unexpected properties. The key feature is that instead
of ongoing gain and loss of single links in the network,
whenever a host changes foraging specialization they si-
multaneously break all their links and immediately re-
place them with new and different links, all with a single
flower species different from the one previously visited.
Our goal is to characterize how the pathogen reproduc-

tion number R0 and long-term disease prevalence are af-
fected by the existence of individual-level sequential spe-
cialization and by the temporal constancy of specialized
preferences. Across a wide range of parameter values and
contact network structures, we find that the effects of indi-
vidual specialization can be extremely large. A model ig-
noring sequential specialization can be wildly inaccurate
about whether a pathogen can persist, typically (but not al-
ways) underestimating the potential for disease persistence.
For specificity we refer to hosts as bees, but the model is

not bee specific or even pollinator specific (and would be
inappropriate for social bees, as it omits direct transmis-
sion between hosts). Moreover, we show (as outlined in
“Discussion”) that our key findings hold in a very differ-
entmodel, inspired byWilber et al. (2019), where individual-
level foraging preferences entail different levels of contact
with an environmental reservoir for the pathogen. The fun-
damental mechanism is the same in both cases, persistence
of the disease in the subnetwork of hosts whose current
specializations make them good infectors and/or infectees.
Computer scripts to replicate all results and figures in

this article are provided online in the supplementalmaterial.1

Methods: The General Model

Our starting point is the Truitt et al. (2019) model for a
pathogen spreading among multiple species of flowers

1. Code that appears in The American Naturalist is provided as a con-
venience to readers. It has not necessarily been tested as part of peer review.
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and pollinator hosts in a plant-pollinator network, with
the contact network structured by plant and pollinator
traits. As in that model, we assume that the disease is
susceptible-infected-susceptible (SIS) in both pollinators
and flowers: individuals that recover from infection are
again susceptible and unchanged by having been infected.
We extend the model of Truitt and colleagues by including
dynamically changing foraging preferences among polli-
nator hosts of the same species. Model notation is summa-
rized in table 1. Truitt et al. (2019) conducted an extensive
literature survey to estimate parameters and parameter
ranges for native bees in old-field communities in upstate
New York (their table 1), which we use here in several of
the numerical examples below.
We consider a network of Q bee species foraging on at

least two out of K flower species. During any brief period,
however, each individual bee visits only one flower spe-
cies; a bee currently visiting flower species k will be called
a type k bee. Apart from current flower preference, all
bees in a species are identical. Let jaq,k,j denote the rate
at which a type j bee in species q switches to type k ( j,
and define 2jaq,j,j to be the total rate at which a species
q, type j bee switches to some other type, where

aq,j,j p 2
X
k(j

aq,k,j: ð1Þ

We assume that jaq,j,jj ≈ 1 for all bee and flower species,
so that j measures the total rate of switching, which we

can adjust to study how outcomes such as disease persis-
tence and prevalence depend on switching rate. The long-
term average preference distribution of a species q bee,
which we denote by hq,k, k p 1, 2, :::,K , is given by the
equilibrium of the switching dynamic dh→q=dt p jaqh

→
q

on the space of discrete probability distributions, where
aq is the matrix with entries aq,k,j.
In numerical studies, we considered three preference

structures. The first was nearly uniform preferences hq,k ≈
1=K resulting from small random perturbations of com-
pletely random switching aq,k,j p 1=(K 2 1) for all k ( j.
The other two were trait-based preferences, modeling pat-
terns frequently observed empirically in pollination net-
works (Truitt et al. 2019). Host and flower species are
assigned evenly spaced trait values on the interval [0,1].
In “trait matching,” the traits are interpreted as scaled size
measures (e.g., tongue length and corolla tube length), and
hosts preferentially switch to flowers with traits most sim-
ilar to their own. In “nested” preferences (Truitt et al.
2019), x and y are interpreted as choosiness and attractive-
ness, respectively. All hosts preferentially switch to more
attractive flowers, with choosier hosts having a stronger
bias toward more attractive flowers. The strength of trait-
based preferences is controlled by parameters s and n,
which determine how strongly pollinators prefer similar-
sized (trait matching) or more attractive (nested) flowers.
In appendix S1 (apps. S1–S9 are available online), we give
the formulas for these preference structures and graph

Table 1: Parameters or parameter combinations for the rescaled model (eq. [4]) and their definitions

Parameter Definition or formula Units

Nk Total population of species k flowers flowers or inflorescences
Mq Total population of species q bees at the disease-free equilibrium individuals
bq Total birth rate of bees bees/day
aq,k Transmission rate from infected bee to noncontaminated flower day21

bq,k Transmission rate from contaminated flower to susceptible bee day21

gq Bee rate of recovery from infection day21

mq Death rate of susceptible bees day21

vq Additional death rate of infected bees day21

zk Flower rate of recovery from infection day21

j Parameter controlling the overall rate of preference switching proportion (unitless)
aq,k,j Rate of bee preference switching from flower species j to k, k ( j for bee species

q when j p 1; see equation (1) for k p j
day21

aq Switching matrix for bee species q, with (k,j) entry aq,k,j day21

hq,k Equilibrium fraction of time that a species q bee is specialized on species k flowers proportion (unitless)
R0,q,k (hq,kaq,kbq,k)z21

k (gq 1 mq 1 vq)
21 proportion (unitless)

aq D(aq,1,aq,2, :::,aq,K) day21

~bq D(~bq,1, ~bq,2, :::, ~bq,K), where ~bq,k p hq,kbq,k day21

Y 2D(z 1, z2, :::, zK) day21

Xq(j) 2(gq 1 mq 1 vq)IK 1 jaq, where IK is the K#K identity matrix day21

Note: Subscripts k and q indicate parameters that vary among flower or bee species, respectively. D(⋅) indicates a diagonal matrix with entries ⋅ on the
diagonal. Units correspond to table 1 in Truitt et al. (2019), which gives estimates and ranges for many of the parameters for old-field communities in upstate
New York.
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some examples (fig. S1; figs. S1–S7 are available online). All
three preference structures are irreducible, so hq,k is well de-
fined and unique.
We assume that each flower species k has a constant

number of individuals, Nk. For bees, we include demo-
graphic processes so that infection can affect mortality.
We assume a time-invariant total birth rate bq (bees/time)
for species q, with all newborns uninfected. We assume
that natural mortality mq and additional mortality of in-
fected bees vq vary across bee species but are time invari-
ant and in particular are not affected by the bee’s current
foraging preference. Define Sq,k as the number of bees of
species q and type k that are susceptible, Iq,k as the number
of bees of species q and type k that are infected, Uk as the
number of flowers of species k that are pathogen-free (un-
contaminated), and Ck as the number of flowers of spe-
cies k that are contaminated with pathogens. A suscepti-
ble species q, type k bee is assumed to become infected
through foraging on contaminated flowers at rate bq,kCk=
Nk. The value of bq,k combines the rate of flower visitation
by each type k bee and the chance of infection given visita-
tion to a contaminated flower. Both of those may vary
across flower species. The factor Ck=Nk assumes that bees
visit flowers of their preferred species at random, without
regard to whether they are contaminated.
Similarly, each infected species q, type k bee contam-

inates uncontaminated species k flowers at total rate
aq,kUk=Nk, where aq,k combines the per-bee visitation rate
to species k flowers with the chance of causing contami-
nation on each such visit.
The disease is assumed to be SIS: once a bee or flower

clears infection, it becomes susceptible again. An infected
species q bee recovers at rate gq (independent of current
foraging preference), and a contaminated flower of spe-
cies k becomes pathogen-free at rate zk.
To complete the model, we need to specify the type

(foraging preference) distributions of newborn bees in
each species. We assume that the fractions at birth equal
the steady-state fractions hq,k resulting from the switching
rates. Thus, species q bees of type k are born at rates hq,kbq.
The reason for this assumption (besides avoiding addi-
tional parameters) is that it is necessary to have a con-
trolled experiment for the effect of bee specialization—
that is, for effects of changing the value of j. With this
assumption, all j values produce the same species-level
link strengths in the absence of disease—that is, the same
values for the overall frequency of visits by species q bees
to species k flowers. Different values of j then result in
different individual-level behaviors that all produce the
same species-level network. Otherwise, different j values
would produce different visitation rates in the absence of
disease, which would be confounded with the effect of
switching rate per se.

These assumptions give the following dynamic
equations:

dSq,k
dt

p bqhq,k 1 gqIq,k 2 bq,kSq,kCk=Nk 2 mqSq,k

1 j
XK
jp1

aq,k,jSq,j,

dIq,k
dt

p bq,kSq,kCk=Nk 2 (gq 1 mq 1 vq)Iq,k 1 j
XK
jp1

aq,k,jIq,j,

dCk

dt
p

Uk

Nk

� �XQ
qp1

aq,kIq,k 2 z kCk,  where UkpNk 2 Ck:

ð2Þ
As above, aq,k and bq,k reflect the net effect of flower vis-
itation and pathogen transmission rates for a species q
bee currently specializing on species k flowers.
We can reduce the parameter count by scaling bee abun-

dance relative to their disease-free steady-state abundance
Mq ≡ bq=mq and flowers relative to their total abundance
Nk. However, we do not rescale time because little is gained
by doing so. Defining

sq,k p Sq,k=Mq, yq,k p Iq,k=Mq, ck p Ck=Nk, ~a q,k

p Mqaq,k=Nk, ð3Þ
the rescaled model is

dsq,k
dt

p mqhq,k 1 gqyq,k 2 bq,ksq,kck 2 mqsq,k 1 j
XK
jp1

aq,k,jsq,j,

dyq,k
dt

p bq,ksq,kck 2 (gq 1 mq 1 vq)yq,k 1 j
XK
jp1

aq,k,jyq,j,

dck
dt

p (12 ck)
XQ
qp1

~aq,kyq,k 2 z kck:

ð4Þ
Henceforth, we will always work with the rescaled model,
and for clarity we write a in place of ~a. Two parameter
combinations that arise repeatedly are

b̂ q,k p bq,k=z k, âq,k p aq,k=(gq 1 mq 1 vq): ð5Þ
These are both measures of “lifetime infectivity”: per
capita infectivity (to a particular kind of potential infectee)
multiplied by the average time to recovery for flowers and
the average time to death or recovery for bees.

Results: The No-Switching and Rapid-Switching Limits

The goal of our model analysis is to discover how model
predictions depend on whether the pollinator hosts are
generalists or “sequential specialists” with preferences
that are always narrow but change over time to eventually

ð3Þ
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(if they live long enough) encompass the full niche breadth
of their species (Szigeti et al. 2019; see also other studies
mentioned in the introduction).
In this section, we begin our study by asking how the

pathogen’s reproduction number R0 and steady-state dis-
ease prevalence in bees vary as a function of the switching
rate parameter j. As j → 0, individual bees spend a greater
and greater fraction of their life foraging on their initially
preferred flower species, and when j p 0, they spend their
whole life specialized on that one species. As j → ∞, each
bee is effectively nonspecialized.
The reproduction number R0 is the largest eigenvalue

of the next-generation matrix (NGM), which describes
the linearized dynamics for the infected subsystem at the
disease-free equilibrium (e.g., Diekmann et al. 2010). For
our model, it is convenient to define one generation as
bee-to-bee transmission mediated by flowers or, equiva-
lently, flower-to-flower transmission mediated by bees.
When there is no switching (j p 0), the system reduces

to a collection of unconnected networks, each consisting of
one flower species and the bees in any species that visit it.
The value of R0 for the system as a whole is the maximum
R0 for any of the unconnected subnetworks (because the
eigenvalues of a block-diagonal matrix are the eigenvalues
of the blocks). Importantly, this maximum subnetwork R0

is also the limiting value of R0 for the full system as j → 0,
because eigenvalues are a continuous function of matrix
entries (e.g., Horn and Johnson 1985, app. D), and hence
approximates the full-system R0 when j is very small.
Because there is only one flower species in each subnet-

work when j p 0, the flower-to-flower NGM is 1#1,
and it can be computed directly by considering flower-
to-flower transmission mediated by all bees. Each species
k flower remains contaminated for average time 1=z k,
infecting bq,khq,k bees of species q per unit of time, which
are all type k. Each species q bee of type k remains infected
for average time 1=(gq 1 mq 1 vq), contaminating aq,k

flowers of species k per unit of time. The value of R0 for
the flower species k subnetwork is therefore (in terms of
rescaled model parameters)

R0,k p
XQ
qp1

R0,q,k, where R0,q,k p
hq,kaq,kbq,k

z k(gq 1 mq 1 vq)

p hq,kâq,kb̂q,k:

ð6Þ

The value of R0 for the community as a whole is R0(0) p
max

k
R0,k.

The system also simplifies considerably in the rapid-
switching limit j → ∞. In that limit, all bees in a species
are equivalent because the infected fraction is the same for
all types. Bee species q thus collapses to a single type that
is constantly allocating fraction hq,k of foraging time to
flower species k. The value of R0 can then be derived from

the Q#Q matrix describing one “generation” of bee-to-
bee transmission mediated by flowers. Each species n bee
remains infected for time (gn 1 mn 1 vn)

21 and infects
hn,kan,k=(gn 1 mn 1 vn) p hn,kân,k flowers of species k. Each
species k flower remains infected for time 1=zk and infects
hm,kbm,k=z k p hm,kb̂m,k bees of species m. Thus, the Q#Q
matrix Q∞ with entries

Q∞
m,n p

XK
kp1

hn,kân,khm,kb̂m,k ð7Þ

is the bee-to-bee transmissionmatrix, whose largest eigen-
value is the pathogen reproduction number R0(∞).
Numerical solutions of the full model with randomly

generated parameters and j ≪ 1 or j ≫ 1 confirm that
the values of R0(0) and R0(∞) correctly predict whether the
disease persists, in both the slow- and the rapid-switching
limits (fig. S5).
In numerical experiments with randomly generated

parameters (for examples with each of the three prefer-
ence structures, see figs. 1 and S2), we found that R0(0)
was larger than R0(∞), often by a widemargin. Parameters
such that R0(∞) ! 1, implying that the disease could not
persist with rapid preference switching, could have R0(0)
values as high as 5 or 6. In those cases, if individual for-
aging preferences change slowly, modeling and analysis
that failed to recognize the existence of heterogeneous in-
dividual preferences would predict die-off of a pathogen
that is in fact strongly persistent.
The situation is more complicated regarding steady-

state disease prevalence. For a given R0, steady-state dis-
ease prevalence is generally higher with rapid switching
than with slow switching (fig. S5), and this can counteract
the effect of switching rate on R0. When the pathogen is
unable or barely able to persist with rapid switching, its
prevalence at a low switching rate may be considerably
higher (e.g., nearly 10% rather than 3%; figs. 2, S3). In con-
trast, if the pathogen is able to persist at moderate or high
abundance even when switching is rapid, its prevalence at
a low switching rate could be lower by a factor of two. Thus,
if individual preferences are permanent or change slowly,
an analysis ignoring this heterogeneity could substantially
over- or underpredict the steady-state disease prevalence.
But is it actually true that R0(∞) is always less than R0(0)?

In the case of Q p 1 bee species, the mathematics sim-
plifies considerably: R0,k reduces to (dropping the q index)
R0,k p hkâkb̂k, and thematrixQ∞ reduces to a single num-
ber. Therefore,

R0(∞) p Q∞ p
XK
kp1

h2
kâkb̂k

≤
XK
kp1

hkmax
j
R0,j p R0(0),

ð8Þ

ð6Þ

ð8Þ
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Figure 1: Comparison of R0(0) (no switching) versus R0(∞) (very rapid switching) for 2,500 randomly generated parameter values, with
Q p 15, K p 10. Baseline parameters for all species and species pairs z p 2, g p 0:1, m p 0:03, v p 0:02, a p 0:01, b p 9, taken from
table 1 of Truitt et al. (2019) except that b was chosen to give R0 ≈ 1 at the baseline values. The expression max(R0(0)jR0(∞) ! 1) is the
largest R0(0) for which the corresponding R0(∞) value is !1 so that a model ignoring individual specialization would predict pathogen
die-off. Parameter sets were generated by multiplying the baseline value (for each species or pair) by independent Uniform(0.05, 1.95) ran-
dom numbers. Preferences hq,k resulted from a nested network with n p 3. Corresponding results for random and trait-matching networks
are shown in figure S2. This figure was generated by R script R0_and_mixing.R.
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Figure 2: Comparison of steady-state disease prevalence in bees (infected bees/total bees including all species) with j p 0:01 (slow
switching) versus j p 100 (rapid switching) for 500 randomly generated parameter values, with Q p 5, K p 10. The dashed line is the
1∶1 line. Baseline parameters for all species and species pairs were z p 0:2, g p m p 0:15, a p 0:05, b p 2. This baseline differs from
figure 1 to obtain a wider range of prevalence values, and very similar results (not shown) were obtained without exception for other choices
of baseline. Parameter sets were generated as in figure 1. Simulations were initialized with disease prevalence of 2.5% in all flower species and
0.5% in all bee species and run to time t p 5,000; plotting trajectories of disease prevalence over time (results not shown) confirmed that
t p 5,000 is sufficient for disease prevalence to reach steady state. Preferences hq,k resulted from a nested network with n p 3. Corre-
sponding results for random and trait-matching networks are shown in figure S3. This figure was generated by R script Prevalence_
and_mixing.R.
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with equality only when R0,k is the same for all k with hk 1

0. In other words, apart from that exceptional situation,
forQ p 1 very slowmixing always leads to greater disease
persistence than very rapid mixing. For the simplest such
case—one bee species and two flower species—it is more-
over the case that R0(j) is a monotonically decreasing
function of j (see app. S3): faster preference switching al-
ways makes a disease outbreak less likely to occur.
To our surprise, we found that this pattern does not al-

ways hold with two or more pollinator species. Generat-
ing random parameter sets, R0(∞) 1 R0(0) is always infre-
quent but is least rare when there are few flower species
(figs. 3, S4; simulation details are in app. S4). The frequency
of these exceptional parameter sets depends weakly on the
number of bee species but decreases quickly as the number
of flower species increases. However, even for K p 10
flower species and Q p 10 bee species, there is a minute
fraction of exceptional parameter sets drawn from lognor-
mal distributions (!0.1%; see script ConjectureFail.R).

When Does Rapid Switching Increase R0?

To see when R0 is increased by rapid switching (or equiv-
alently, by absence of individual-level specialization), we
first consider the simplest case: two bee and two flower
species (Q p K p 2). Here we present the main results;
derivations are in appendix S5.
In the no-switching limit, the two-generationR0 (eq. [6])

isR0(0) p maxk(R0,1,k 1 R0,2,k). In the rapid-switching limit,
we find in appendix S5 that

R0(∞) p
1
2

h
�R0 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R2

0 1 4D
p i

, ð9Þ

where

�R0 p h1,1R0,1,1 1 h1,2R0,1,2 1 h2,1R0,2,1 1 h2,2R0,2,2,

D p h1,1h1,2h2,1h2,2(â1,1â2,2b̂2,1b̂1,2 1 â1,2â2,1b̂1,1b̂2,2)

2 h1,1h2,2R0,1,1R0,2,2 2 h1,2h2,1R0,1,2R0,2,1:

ð10Þ

Because �R0 ≤ R0(0), R0(∞) can exceed R0(0) only if the
contribution from D is positive and large. For example,
the first term in D will be very large if â1,1, â2,2, b̂2,1, and
b̂1,2 are all large, and if b̂1,1, b̂2,2, â2,1, and â1,2 are all very
small, then all of the R0,q,k are small and hence R0(0) is
small.
The biological interpretation of this situation is that in

each bee-flower pair, transmission from bee to flower
(âq,k) or from flower to bee (b̂q,k) is small, so the disease
cannot persist by transmitting back and forth between
any one bee-flower pair. See figure 4A for an example.
Effective transmission pathways in this network (i.e.,
pathways not including any narrow blue arrows) must
include preference switching by hosts, which can create
new and highly effective transmission pathways (fig. 4B)
if switching is rapid.
This mechanism is impossible with only one species

(Q p 1) because each flower species interacts with only
one bee type. A pathway created by switching can be ef-
fective only if some flower species has high transmission
in both directions with a bee type that visits it. But in that
case, disease persistence is most likely when those bees
stick to those high transmission links. Moreover, the struc-
ture of the network can preclude formation of effective
transmission pathways through switching, even with more
than one bee species, as illustrated in figure 4C, 4D. To cre-
ate an effective pathway in that network, bees would have
to change species identity (e.g., Bee1,1 to Bee2,1), which is im-
possible. Thus, a network where each bee-flower pair has
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Figure 3: Frequency of the exceptional parameter sets giving R0(∞) 1 R0(0) in randomly generated parameter sets for varying numbers of
plant species in the transmission network. Parameters were generated by random draws from uniform distributions in A and from lognor-
mal distributions in B. For details of the random parameter generation, see appendix S4. Preferences hq,k resulted from a nested network with
n p 5. Corresponding results for random and trait-matching networks are shown in figure S4. This figure was generated by R script
ConjectureFail.R.
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poor transmission in at least one direction is necessary, but
not sufficient, for faster switching to increase R0.
These general properties of small networks are sup-

ported by simulations with larger networks (fig. S6). Spe-
cifically, exceptional parameter sets were characterized by
low values of max

q,k
(âq,kb̂q,k). Low values indicate that high

transmission in one direction is always accompanied by
low transmission in the other, so no bee-flower pair can
maintain the pathogen by passing it back and forth be-
tween themselves. Preference switching may then pro-
mote pathogen persistence, but it also might not, de-
pending on other features of the network.

Results: Intermediate Switching Rates

So far, we have been contrasting the extreme cases of very
slow switching and very rapid switching. In the former

limit, within-species foraging specializations are fixed for
life; in the latter, specializations change so fast that individ-
uals are really generalists with no within-species variation.
We now explore how R0 varies in between those limits,
when individuals really are sequential specialists. As before,
we consider flower-to-flower transmissionmediated by bees
(or equivalently, bee-to-bee transmission mediated by flow-
ers) as a single “generation” for calculatingR0 using a next-
generation matrix.
In appendix S6, using notation defined in table 1, we

show that the flower-to-flower next-generation matrix is

Z(j) p
XQ
qp1

aqX21
q (j)~bq

 !
Y21: ð11Þ

Both ~bq and aq are analogous to the bN component of R0

in a single-species SIS model. The difference between

A) B)

C) D)

Figure 4: Illustration of how R0(∞) can be larger than R0(0) for some exceptional parameter sets, with two bee and two flower species.
A, Red (wide) and blue (narrow) arrows indicate high and low transmission rate parameters, respectively. In the absence of switching,
any transmission pathway from a species back to itself must traverse an equal number of red and blue arrows. B, Rapid switching (black
curved arrows) creates a transmission pathway through the whole community that traverses only red arrows and fast black switching arrows.
Such a pathway has to utilize both bee species and hence does not exist for Q p 1 bee species. Provided that none of the equilibrium
preferences hq,k are too small, this will lead to R0(∞) 1 R0(0). C, D, Example illustrating that poor back-and-forth transmission in all
bee-flower pairs is not sufficient for a parameter set to be exceptional. Because every path from a flower species to itself traverses red
and blue arrows, preference switching cannot create any pathway from a species to itself that traverses only high-transmission arrows.
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them results from scaling the model so that every flower
species has abundance one, while species q, type k bees
have abundance hq,k when disease is absent. Since Z(0) p
D(R0,1,R0,2, :::,R0,k), equation (6) is confirmed, and we
numerically confirmed that R0 from Z(j) agrees with R0

from equation (7) for large j (script Check_Z_limits.R).
As j → ∞, Z(j) converges to the matrix with entries

Z(∞)m,n p
XQ
qp1

hq,mâq,mhq,nb̂q,n, ð12Þ

analogous to equation (7) (see app. S7). Intuitively, the dif-
ference between Z(j) and Z(∞) is that with infinitely fast
switching, an infected bee immediately “forgets” which
flower species it was visiting when it got infected and visits
each flower species according to its long-run average pref-
erence hq,k. With finite switching rate, newly infected bees
initially continue to specialize on the flower species that
infected them, so on average they spend slightly more time
before recovery or death visiting that species, relative to hq,k,
and slightly less time visiting other flowers (we prove this in
app. S7).
It is always the case that slow preference switching is

less favorable for disease persistence than no switching.
Specifically, considering Z and R0 as functions of j, we
show in appendix S8 that R0

0(j) ! 0 at j p 0. This general
property can be explained heuristically as follows. When
j p 0, there is no transmission between flower species, so
the flower-to-flower NGM is diagonal with diagonal en-
tries R0,k, the per-generation rate of pathogen increase
in flower species k. The community R0 is therefore the
largest of the R0,k (we call this the “dominant” flower),
and the corresponding eigenvector is all zeros except for
the entry corresponding to the dominant flower. This says
that infection levels in the dominant flower will greatly
exceed those in the other flowers, when the pathogen is
becoming established. Preference switching thus causes
a net loss of pathogen from the dominant flower, slowing
the increase of infection in the dominant flower and
therefore in the community as a whole.
In contrast, at the rapid-mixing extreme, we have seen

that for some exceptional parameter sets R0(j) is largest
at j p ∞ and therefore increasing at very large j. In ap-
pendix S7, we show that under certain special conditions
R0(j)2 R0(∞) is (to leading order in 1=j) proportional toPQ

qp1Cov(âq, b̂q). This aligns with our simulations (fig. S6),
in that rapid switching promotes disease persistence only
when no bee-flower pair has high transmission in both
directions. However, when those special conditions are
relaxed, the finite-j correction to R0 includes additional
terms that can override the impact of â, b̂ covariance. This
again aligns with the simulation result that negative â, b̂

covariance does not necessarily result in R0 increasing at
large j.
Simulations with randomly generated parameter values

(see fig. S7) show that it is uncommon but not extremely
rare for R0(j) to be increasing at large j (generally !10%,
especially for larger K). Thus, disease persistence is gener-
ally favored by longer persistence of individual preferences.

When Does Specialization Matter?

The biological relevance of individual specialization in a
community depends on how long individual preferences
must persist for community properties to differ from the
fast-switching limit that is equivalent to no specialization.
A useful clue comes from equation (11). Holding every-
thing but j constant, it is easy to see that the contribu-
tion of bee species q to Z(j) is a function of the ratio
j=(gq 1 mq 1 vq). We can interpret this as the ratio be-
tween the mean bee infection time (gq 1 mq 1 vq)

21 and
the characteristic switching time 1=j.
We therefore predict that there will be a substantial

effect of switching when the switching time 1=j is com-
parable to the bee mean infection time, at least when
mean infection time is not highly variable from species
to species. To test this prediction, we used numerical op-
timization to find the maximum possible ratio between
R0(j) and R0(∞) as a function of model parameters sub-
ject to constraints. Without constraints, for any value of
j, the maximum possible ratio is apparently 1∞. We
therefore imposed the constraint that the ratio between
the same parameter for two species or species pairs (e.g.,
any ratio aq1,k1=aq2,k2 ) could be at most some number
r 1 1.
The results (fig. 5) support the conjecture. Even when

the mean preference duration is only half the mean infec-
tion time, the true R0 for a set of parameters can be three
times larger than what it would be without individual spe-
cialization when the maximum ratio r equals 4 and nearly
six times larger when r equals 10. The effect of specializa-
tion decreases sharply with shorter preference durations
and saturates with longer preference durations. Numeri-
cal values of (true R0)/(no-specialization R0) depend on
the contact network structure and network size: with few
flower species (e.g., K p 4), the potential effect of special-
ization is smaller (results not shown). However, the shape
of the relationship is always very similar to that in figure 5
and parallels a plot of “infection loyalty” as a function of
relative preference duration. Infection loyalty is the ex-
pected fraction of the time until death or recovery that a
forager continues to specialize without interruption on
the species from which it acquired infection. When infec-
tion loyalty is low, the effect of specialization is small. But
even when preference durations are substantially shorter
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than infection times, infection loyalty can be above 50%
and the presence of individual-level specialization can
have a large effect on R0.
With a nested-preference network, the parameter values

maximizing the impact of specialization always involved
high transmission between the most popular flowers and
themost selective foragers and low transmission otherwise.
Impact-maximizing parameters for trait-matching net-
works generally involved a few clusters of bee-flower pairs
with high a and b values, but their locations varied unpre-
dictably across optimization runs with different initial pa-
rameter guesses.

Discussion

Infectious disease ecologists have long recognized that
persistent between-individual variation in contact and/
or transmission rates or in location within a contact net-
work can have substantial impacts on the dynamics of in-
fectious disease outbreaks and spread (e.g., Lloyd-Smith
et al. 2005; Fenton et al. 2015; Pellis et al. 2015; Vander-
Waal and Ezenwa 2016; White et al. 2017; Roswell et al.
2019). A classic example is the crucial role played by a small
core group, with high contact and infection rates, for the
rise and eventual control of gonorrhea incidence rates in
the United States (Hethcote and Yorke 1984). Recently,
Wilber et al. (2019) found substantial between-individual

variation in rates of environmentally mediated (“indirect”)
bovine tuberculosis transmission among white-tailed deer,
raccoon, opossums, and cattle. In multihost communities,
between-species variation in contact rates or susceptibil-
ity is similarly important (e.g., Dobson 2004; Fenton et al.
2015).
This study demonstrates theoretically that labile spe-

cialized preferences for particular resources or habitats
can also have major consequences for disease persistence
and spread in multispecies disease systems. Specialized
preferences are known to be common in insects, fishes,
birds, herps, andmammals (e.g., Bolnick et al. 2003; Araújo
et al. 2011), and their effects on disease persistence in our
models are often not subtle. We found that even when all
pollinators in a species have the same lifetime average
preferences and niche breadth, the within-species behav-
ioral heterogeneity present at any one moment creates po-
tentially crucial opportunities for a disease to persist in a
core group of pollinators focusing their attentions, for
themoment, on the subset of flowers with which they have
strong back-and-forth transmission links. Another possi-
ble analogy is to view specialized preferences as creating
“source” and “sink” subnetworks. The source subnetwork
consists of pollinator hosts currently specializing on a spe-
cies of flower with which they have strong pathogen trans-
mission in both directions. Hosts joining the source sub-
network (as a result of a preference switch to one of
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Figure 5: Numerical results showing how the largest possible ratio between the true R0 for a set of parameters and the R0 for the same
parameters without individual specialization varies with the ratio between mean preference duration 1=j and mean infection time (the un-
weighted average over bee species of (gq 1 mq 1 vq)

21). The two solid blue curves (left Y-axis) correspond to two values (4 or 10) for the
maximum allowed ratio of values for aq,k, bq,k, zk, or rq across different k and q, within each parameter. Results shown here are for Q p 8,
K p 10, and a trait-matching preference network with s p 5. Each maximum ratio was estimated by three iterations of minimizing its in-
verse with Nelder-Mead search using function optim followed by local quadratic optimization using bobyqa in the minqa R library. The
dashed red curve (right Y-axis) is the host “infection loyalty”—the expected fraction of the time from infection until death or recovery that
a newly infected host continues to specialize (without interruption) on the flower species that infected it. This figure was generated by R
script Maximize_Specialization_Effect.R.
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those flower species) quickly become infected. Hosts leav-
ing the subnetwork spread the pathogen to other flower
species and from there to other hosts, allowing low-level
disease presence in sink subnetworks. If preference switch-
ing is rapid, joining a source subnetwork is typically too
fleeting to have any effect. But when switching occurs on
a timescale comparable to disease processes, the effects
can be very substantial (figs. 1, 2, 5).
We have chosen to focus on amodel for the system that

we and our colleagues study empirically, rather than a
general model, to take advantage of empirically grounded
parameter estimates (Figueroa et al. 2019; Truitt et al.
2019) and because foraging specialization in pollinators
is amply documented. Concerns about the generality of
our conclusions are therefore natural. We believe that
our findings are relevant to any situation where multiple
hosts, multiple vectors, or multiple habitats contribute to
the persistence of a disease, because the “core group/
source subnetwork” phenomenon will always be possible.
Any of these kinds of specialization can result in individual-
level contact networks being very different from the species
average contact network, and it is the former that deter-
mine a pathogen’s fate and impact. Even when trans-
mission is not a direct consequence of foraging as in our
model, foraging preferences are likely to affect where an
individual spends its time (as different food items will of-
ten be found in distinct locations) and therefore affect its
rate of contact with other species and with environmental
reservoirs. As one specific example, in appendix S9, we
show that our key findings hold in a very different model,
inspired byWilber et al. (2019), where individual foraging
preferences entail different levels of contact with an envi-
ronmental reservoir for the pathogen. We assume that at
any one time individuals limit their foraging to one out
of m habitat types and occasionally switch preferences.
Foraging in one particular habitat type brings them into
contact with an environmental reservoir where the patho-
gen can persist but would die out eventually if it is not sus-
tained by pathogens shed from infected hosts foraging in
that habitat. Our key result for this model is that slowly
changing preferences can result in R0 being larger than
what it would be, in the absence of foraging preferences,
by a factor of up to

ffiffiffiffi
m

p
when indirect transmission via

the reservoir is highly efficient relative to direct transmis-
sion. The ratio over two generations (i.e., m) shows that
the effect on R0 of habitat specialization in this model
can easily be comparable to the two-generation effects of
pollinator foraging specialization (fig. 5).
Conversely, there are some limitations to our analyses.

In both our pollinator model and our environmental res-
ervoir model, we assume that being specialized does not
result in a lower total contact rate but simply limits con-
tacts to a subset of the possibilities. In terms of classical

foraging theory, we ignore the possibility that specializa-
tion will increase search time for preferred flowers or
habitats, tacitly assuming that foragers can quickly find
and reach their targets even when seeking a less abundant
species or habitat. Removing this assumption would be an
important direction for extending our models. We have
also completely ignored within-species heterogeneity. We
expect that within-species heterogeneity in switching rates
could have substantial impacts. For bees in particular, we
have not considered social bees, where within-colony
transmission could have equal or greater importance than
flower-mediated transmission.
Our model analyses have taken parameter values as

“given” and explored the consequences of individual spe-
cialization for projections about disease persistence or
prevalence. The consequences may be even greater if the
model is first used for inference about parameter values, es-
pecially when transmission parameters are fitted to data
on infection rates (as is often the case). Suppose, for
example, that an empirical estimate for R0 is derived from
an observed increase in prevalence during an outbreak—
call it R̂0—and transmission parameters (a or b) in a
specialization-free model are chosen to make the model’s
R0 equal R̂0. In terms of our analysis, the fitted parameters
would ensure that R0(∞) p R̂0, whereas in fact they
should be chosen so that R0(j) p R̂0. In a typical situation
whereR0(∞) ! R0(j), the inferred transmission parameters
would be biased upward.Disease projectionswould be based
on overestimates of transmission rates and overestimates
(by ignoring specialization) of howwidely each host would
spread the pathogen in the network. Transmission param-
eter estimates based on prevalence data in an area where
the disease is at steady state could be biased in either
direction.
Specialization and preferencesmay sometimes respond

predictably to variation in conditions. For example, Tin-
ker et al. (2008) found that diet specialization in sea otters
increased when resources were less abundant. Such be-
havioral adjustments create the potential for resource
abundance, or other factors, to indirectly drive variation
in disease processes through their effects on individual spe-
cialization. Civitello et al. (2018) have investigated the ex-
tent to which anthropogenic resource supplementation (in
the form of food provisioning, agricultural fertilization, or
aquatic nutrient enrichment) can impact infections both
directly (e.g., by increasing host population size or altering
parasite production within hosts) and indirectly (by alter-
ing interactions with other members of the larger ecosys-
tem). These studies suggest possible opportunities for out-
break prediction based on resource availability changes, or
control through altering resource availability, in disease
systems where individual specialization is an important
factor.
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Nearly a decade ago, Araújo et al. (2011) were able to
review 241 case studies that not only documented but
quantified the degree of individual specialization with re-
gard to diet, foraging behavior, habitat choice, and other
niche axes. But outside of a few well-studied groups, such
as bumblebees and butterflies, there are very few studies
where the persistence time of individual preferences has
been studied quantitatively (Novak and Tinker 2015).
One of our main goals in writing this article was to spur
studies on the temporal constancy of specialized prefer-
ences: how often do they change, and how much do they
change when they do? Such data may be especially hard to
get for the pollination systems we have modeled here, be-
cause of the challenges of tracking individuals that are
small, unpredictable, and able to fly fast. Our results sug-
gest that it could be very worthwhile to develop new indi-
vidual tracking technologies to make that job easier.
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