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ABSTRACT We summarize recent evidence that models
of earthquake faults with dynamically unstable friction laws
but no externally imposed heterogeneities can exhibit slip
complexity. Two models are described here. The first is a
one-dimensional model with velocity-weakening stick-slip
friction; the second is a two-dimensional elastodynamic model
with slip-weakening friction. Both exhibit small-event com-
plexity and chaotic sequences of large characteristic events.
The large events in both models are composed of Heaton
pulses. We argue that the key ingredients of these models are
reasonably accurate representations of the properties of real
faults.

Fault models of the kind pioneered by Burridge and Knopoff
(1) (BK), with fully inertial dynamics but without externally
imposed heterogeneities or stochastic perturbations, are de-
terministically chaotic systems whose behavior resembles that
of real seismic sources (2-5). Like real faults, these models
exhibit broad distributions of slipping events (i.e., earth-
quakes), including a range of small to moderately large local-
ized events, which satisfy Gutenberg—Richter-like statistics,
and large characteristic events, which dominate the cumulative
slip. The individual events exhibit complex patterns of slip, and
the large events are composed of narrow slip pulses—i.e.,
Heaton pulses. Many insights can be gained by studying the
analogs of various seismic phenomena as they appear in such
models. Because quantitative models provide the opportunity
to track the evolution of faults with perfect accuracy and for
arbitrarily long periods of time, these studies may ultimately
lead to progress in areas such as seismic reconstruction and
earthquake prediction.

Many different models of fault dynamics are currently being
investigated. These include quasistatic three-dimensional con-
tinuum elastic models, one- and two-dimensional continuum
models with inertial dynamics such as those we describe here,
and cellular automata. In addition, existing models involve a
wide variety of descriptions of the accumulation of stress as the
system is loaded and the release and redistribution of stress
during slip. While automata facilitate rapid numerical com-
putation, continuum models have the advantage of allowing
more direct associations to be made between model parame-
ters—characteristic length and time scales, elastic constants
and the like—and observations of real seismic phenomena.

Unlike the situation in fluid dynamics where the Navier—
Stokes equation provides an agreed-upon description of the
underlying physics, there is still no general consensus about
what is the right model or equation for describing the motions
of earthquake faults. Therefore, it is useful to study a variety
of models and, in doing so, to learn how their various ingre-
dients determine the behaviors that they exhibit. Of course, it
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is the modeler’s responsibility to be sure that the ingredients
of a model provide a reasonable approximation to the system
of interest and that observed properties are not artifacts of
unphysical assumptions. An interesting feature that many fault
models share with an emerging set of other strongly nonlinear
nonequilibrium phenomena is that the physics at short length
scales can sensitively determine behavior at the largest scales.
For that reason, in using continuum models, particular care
must be taken to extract continuum behavior from numerical
approximations. This point has been emphasized recently by
Rice and coworkers (6).

In this paper, we describe our studies of two particular
versions of the BK model and discuss the degree to which
various features of these models do, or do not, correspond to
properties of the real world. We pay particular attention to the
nature of the dynamic stick-slip instability, which is responsible
for the complex patterns of events that these models exhibit.
First, we describe the simple one-dimensional BK model with
velocity-weakening friction. This is very nearly the same
slider-block model that was introduced by Burridge and
Knopoff in 1967, the main difference being that our version is
completely uniform; all blocks have the same mass, and all
spring constants and friction laws are independent of position
and time. Second, we report some recent results obtained using
a two-dimensional, crustal-plane model with slip-weakening
friction.

We find it easiest to describe the uniform, one-dimensional,
BK model by a massive wave equation with a slow driving force
and velocity-weakening stick-slip friction. In dimensionless
variables, this differential equation has the form

2

02U .
— = U~ ®(U) +vt.

Uzax

(1]
Here, U(x, ¢t) is the displacement of an infinitesimal mass
element or block at position x and time ¢. Dots denote time
derivatives. The original BK slider-block model may be recov-
ered by evaluating the displacement field U(x, ¢) on a discrete
set of points along the x axis and making a finite-difference
approximation for the spatial derivatives on the right-hand side
of the equation.

The first term on the right-hand side of Eq. 1 is the linear
elastic interaction between the blocks—that is, the force due
to the nearest-neighbor coupling springs in the original BK
model. The coefficient of this term (unity in our units) is a
wave speed that may be identified as the velocity of elastic
waves on the fault surface. The massive term, —(U — vt), is the
force exerted by the BK leaf springs, which connect the blocks
to a rigid plate moving at the loading speed v. We interpret this
term as the coupling between the seismogenic layer and the

Abbreviation: BK, Burridge and Knopoff; GR, Gutenberg-Richter.
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stably creeping lower region of the fault. The period of simple
harmonic motion associated with this term is proportional to
the time required for an elastic wave to traverse the crust
depth, which is the same as the characteristic duration of slip
at a single point on the fault in a very large, characteristic
event. For real faults, this period is the order of seconds, the
wave speed is the order of 10 kilometers/sec, and the corre-
sponding length scale is the order of 10 kilometers. Accord-
ingly, our unit of position x is this seismogenic depth.

The last term in Eq. 1 is the velocity-weakening stick-slip
friction, which we usually have taken to have the form

(—00, 1]’ U =0
. 1-0)
o) = T oal’ U>0 [2]
1+— '
1-0)

(For some applications, we have found piecewise linear or
exponential forms of the velocity-weakening function to be
more convenient. The qualitative properties of the model seem
to be insensitive to the specific functional form of ®.) We have
chosen the slipping threshold to be unity by scaling U so that
this threshold is reached in a completely uniform system when
the displacement U is equal to —1 for all x. Thus our displace-
ments U are measured in units of the characteristic slip in a
very large event, a length of order meters for real faults. With
this scaling, the dimensionless loading rate v is the ratio of the
true loading rate, centimeters per year, to the characteristic
slipping speed, meters per second. Therefore, v ~ 1078.

Note that Eq. 2 is a specially simple friction law with a
sharply defined slipping threshold and no extra rate or state
dependencies (7, 8). This friction law permits no stable creep
at small velocities, and the slipping threshold is fully restored
immediately upon resticking.

The only important system-dependent parameter in this
model is the velocity-weakening rate a,, which cannot be
measured directly in the Earth. In the absence of information
to the contrary, we assume that «, must have a value of order
unity. The dynamic instability associated with the velocity-
weakening force law is the principal cause of slip complexity
in this system. A larger value of a, means less energy dissipa-
tion and stronger instability; smaller o, means more dissipa-
tion and weaker instability. We can see this explicitly from a
simple linear analysis of the first-order displacement 8U(x, t)
during a slipping motion. Let 8U ~ exp(ikx + wt), where k is
awavenumber and w is the amplification rate. Then, from Eqs.
1 and 2 we find that

w=a,* Jo?—1-k% [3]

This instability persists—w remains positive—down to arbi-
trarily small wavelengths. As a result, the model needs some
sort of short-wavelength cutoff. We shall return to this point.

The parameter o that appears in Eq. 2 is the force drop or,
equivalently, the acceleration of a block at the instant when
slipping begins. We have introduced o in this version of the
model primarily as a technical device that allows us to study the
limit v — 0. In the absence of o, events begin infinitely slowly
in that limit, which obviously is inconvenient for numerical
purposes. With a value of o of order 10~2 and vanishingly small
v, on the other hand, we need not carry out explicit time
integrations between slipping events and thus can study the
system for very large numbers of loading cycles. We shall see,
however, that o has greater physical significance in the two-
dimensional slip-weakening model.

We have performed numerical integrations of the equation
of motion Eq. 1 over the equivalent of many thousands of
seismic loading cycles with systems containing thousands of
blocks. Our most important observation is that, in this limit in
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which the loading rate v is very small, the system exhibits
persistent slip complexity. That is, if we start with any slightly
nonuniform configuration U(x, t = 0) and integrate Eq. 1
forward in time, without introducing any further noise or
irregularities, we find chaotic motion. A portion of one such
simulation is illustrated in Fig. 1, where we plot a sequence of
fully stuck configurations. The displacements U(x) jump for-
ward during slipping events, and the areas swept out by these
events are our dimensionless seismic moments, M = [8Udx.

Our extensive numerical studies indicate that what we are
seeing in Fig. 1 is a finite sequence of configurations that
belongs to a statistically stationary distribution of event sizes.
Stationarity means that, after initial transients have disap-
peared, this distribution is entirely independent of the initial
configuration. For a, = 2, the distribution contains two
distinct populations: a region of small to moderately large
localized events (corresponding to the smaller events that
cluster in the local minima in Fig. 1) that obey something like
a Gutenberg-Richter (GR) law; and a region of large delo-
calized events—irregularly recurring characteristic earth-
quakes—whose frequency exceeds that of the extapolated GR
law, and that account for essentially all of the moment release.

A typical frequency-magnitude distribution is shown in Fig.
2. Here, R(u) is the differential distribution of frequencies of
events of magnitude p = InM. The distribution of localized
events in this log-log plot has slope —1, a value which persists
for all @, > 2. For smaller «,, we find smaller slopes; and we
also find that, although complexity persists, the characteristic-
event peak disappears near «, = 1 as the instability becomes
weaker.

The large, delocalized events consist of pairs of slipping
pulses that emerge from a nucleation zone and propagate in
opposite directions along the fault at roughly the elastic wave
speed. We have studied these Heaton pulses (9) in consider-
able analytic detail (10, 11) and find that they behave in many
respects like shock fronts whose widths are controlled by the
short-wavelength cutoff. The anomalous sharpness of these
pulses may be an important factor in generating the small-
event complexity that is seen in these models. The crossover
between localized and delocalized events occurs at an event
size that is proportional to the crust depth multiplied by an
amplification factor (order of 2 or 3 for the parameters used
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Fic. 1. Sequence of fully stuck configurations U(x) during a
portion of a simulation of fault motion for the one-dimensional BK
model.
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FiG. 2. Differential magnitude-frequency distribution for the one-
dimensional velocity-weakening model with «, = 3.0, o = 0.01, and
discretization length a = 0.1.

here) that also depends (logarithmically) on the short-
wavelength cutoff. Thus, the GR law extends up to events so
large that their spatial extents are of the order of the crust
depth or more.

Several ingredients of this model are sufficiently unorthodox
or controversial that they require further comment. There is,
of course, no experimental justification or theoretical rationale
for the velocity-weakening friction law; but any attempt to
model the dynamics of real earthquake faults at slipping speeds
of the order of meters per second is necessarily speculative
given our present state of understanding of these complex
systems. More immediate issues pertain to the role of the
short-wavelength cutoff and the role of elastodynamics in
higher dimensions. Another important issue is the coupling to
the bottom of the seismogenic layer—i.e., the —U term—
which is best discussed later in connection with the two-
dimensional model.

The need for a short-wavelength cutoff in Eq. 1 has raised
the concern that complexity in this model might be an artifact
of the numerical discretization rather than the result of inertial
dynamics (12). To test this possibility, we have added a viscous
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Fig. 3. Differential magnitude-frequency distributions for the
two-dimensional slip-weakening model with as = 3.0, o = 0.03, and
7 = 0.2. The three curves differ only in their grid spacings as shown.
The system has size L, = 60, L, = 3.75. We have imposed periodic
boundary conditions in the x direction and have added a layer of
viscous damping at large y in order to minimize the effect of elastic
waves being reflected back onto the fault from the boundary aty = L,.
The solid line has slope —1.
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force, n(6*U/ax2, to the right-hand side of Eq. 1, and have
repeated the numerical analysis with various values of the
discretization length (13). With this new term, the linear
dispersion relation analogous to Eq. 3 becomes

1 1 2
0w=aqa,— 51‘;k2 * a, — -2-'nk2 -1-k3 [4]

so_that there is now a largest unstable wavevector, k, =
V2m/n. If slip complexity were a result of some inherent
discreteness in this model, it should disappear when the
discretization length a becomes so small that k,a << 1. That
does not happen. Complex, earthquake-like dynamics persists
in this limit, and the frequency-magnitude distribution remains
invariant throughout both the GR region and the region of
large delocalized events. We also have looked analytically at
propagating pulses in the model with viscosity and have
examined the crossover from control by the grid size to control
by the viscous length as the grid size becomes small (11).
Again, we conclude that the continuum limit is perfectly well
defined in this model and that slip complexity is an intrinsic
feature of its inertial dynamics.

A specially important element that is missing in the one-
dimensional models is the elastodynamics of the crust. To
begin to address this issue, we recently have completed studies
of a two-dimensional, crustal-plane version of the Burridge—
Knopoff model in which a scalar displacement field U(x, y, t)
satisfies a massive wave equation throughout a half plane, y >
0, bounded by the fault line which we take to be the x axis.
Specifically,

U=VU-U+wt. [5]

As before, the —U term introduces a small-frequency, long-
wavelength cutoff associated with the crust depth. The stick-
slip friction ® enters as a traction acting on the crustal plane
at the fault

aU

vl . [6]
In our two-dimensional work so far, we have used a slip-
weakening analog of Eq. 2 that is based on a frictional-heating
model originally proposed by Sibson (14) and developed more
recently by Lachenbruch (15) and Shaw (16). We write this
failure law in the form

= (—OO’ d)(s - SO)], S = 0,
®= {4’(5 - So) — (), $>0, (71
with
__
&(S = So) =77 55 = S0 (8]

Here, S(x, t) = U(x, 0, ¢) is the displacement of the crust along
the fault; So(x) = Ulx, 0, to(x)] is the value of S at the beginning
of an event; and fo(x) is the time at which slip starts at the point
x. Note that S(x) — So(x) is the total slip at x starting from the
beginning of an event. In a complex event, the material atx may
slip and restick more than once, but ¢ continues to decrease
throughout this motion. When the event ends, the fault reheals
instantly, and the slipping threshold is reset to ¢(0) = 1
everywhere.

Because this is a two-dimensional elastodynamic system, we
cannot use the abrupt initial stress drop o that we introduced
in Eq. 2. Instead, in Eq. 7 the initial stress drops sharply but
continuously over a time 7 via the function
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t—t,
o t—t<m,

at) = 91

g, t—t,= 1.

The time ¢ — ¢, is measured from the last unsticking at # so that,
unlike So or ¢, G(¢) is reset during an event if the fault resticks
and then slips again. That is, the threshold for slipping during
an event is the current value of ¢ increased by o. The overall
role of the stress drop &(¢) in this model does require further
investigation. In future work, we plan to use what we believe
would be realistically larger values of o and to replace the
time-dependent form (Eq. 9) with a slip-dependent function
that would provide a more realistic model of fracture at the
onset of an event.

The analog of the linear dispersion relation (Eq. 3) for this
model is obtained by writing 8U ~ exp(ikx — Ky + wf). We find

K=as, 0= Jai—k*—1, [10]

which implies that slipping deformations grow unstably for k
< Va} — 1 and that shorter wavelength perturbations prop-
agate without either growing or decaying. As a result, we do
not expect to need a short-wavelength cutoff in this model.

Our two-dimensional results (17) are remarkably similar to
those that we found in one dimension. In Fig. 3 we show
frequency-magnitude distributions for several different grid
sizes. As in Fig. 2, we see a GR law with slope —1 for the
smaller, localized events and an excess of large, delocalized
events. For the smaller grid size, the GR law extends further
in the direction of small (few-block) events; but the frequencies
of the events at all larger magnitudes remain unaffected by this
change in the numerics. We also see Heaton pulses as shown
in Fig. 4. Finally, in Fig. 5, we show a scatter graph of individual
events in the M, A plane, where M is the seismic moment
defined previously and A is the size of the slipping region along
the x axis. For the localized events, we find that M scales
roughly as A2, consistent with the assumption of a constant
stress drop of order o in a two-dimensional system. For the
delocalized events, on the other hand, M scales linearly with A
as we would expect for propagating pulses. Note that the initial
stress drop o sets the scale for the small events in this model
and therefore is an essential ingredient of the failure mecha-
nism.

As has been emphasized by Knopoff (18), the —U term in
Egs. 1 and 5 is inconsistent with Hookean elasticity; static
stress fields decay exponentially and elastic waves become
unphysically dispersive at long wavelengths. Our reply to this
concern is that —U is a physically essential restoring force
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FiG. 4. Slip rate § as a function of position x and time ¢ during a
large event. Both pulses accelerate to approximately the wave speed

(unity).
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M)

FiG. 5. Moment M as a function of slip zone size A. Dots indicate
individual events. The lower two dashed lines have slope 2; the upper
two lines have slope 1.

acting in response to motions of the seismogenic layer that take
place in times the order of seconds or less. This time scale must
play an essential role in the dynamics of seismic sources; it must
be included somehow, and the —U term is the natural way for
doing so in low-dimensional models. In a three-dimensional
model of a strike-slip fault, with fully three-dimensional elas-
todynamics, we believe that this time scale would appear as a
low-frequency cutoff in the dispersion relation for Rayleigh
modes on the seismogenic part of the fault surface. Another
way of arriving at the —U approximation in a two-dimensional
theory is to replace it by a term that looks the same at high
frequencies but vanishes in the static limit. For example, a term
of the form — f*., dt' exp[—(t — t')/7]U(t'), with 7 a time of
order minutes or longer, would have precisely the desired
propertles It would then be necessary, however, to replace —vt
in Eq. 5§ by another loading mechanism, say, a boundary
condition that the crust be moving at speed v at some large
distance from the fault. But these are projects for the future.

In summary, both the one- and two-dimensional models
described here have features—small-event complexity, chaotic
sequences of characteristic events, Heaton pulses, etc.—that
seem qualitatively similar to the behavior of real earthquake
faults. [This conclusion, that deterministic inertial dynamics in
a uniform fault model can produce slip complexity, is also
supported at least in part by recent work of Madariaga and
Cochard (19).] Although these models are far from being
complete enough to predict sequences of events on real faults
or on systems of interacting faults, they do provide some
insights that may already be relevant to the problem of
prediction. For example, artificial catalogs generated by these
models are being used for testing and improving prediction
algorithms of the kind introduced by Keilis-Borok and co-
workers (20-22).

The major outstanding issue, however, is the one raised at
the beginning of this essay—whether the ingredients of these
models are sufficiently realistic that the results can be taken
seriously. In our opinion, the principal outstanding uncertainty
about these models is not the —U term or even the friction law
but instead the extent to which the underlying origin of the
complex behavior of real faults is captured by instabilities
associated with inertial dynamics. An alternative hypothesis is
that slip complexity in the real world is primarily the result of
some quenched inhomogeneity associated with the complex
geometry of real faults, and that inertial dynamics is of no more
than secondary importance. Certainly, geometric disorder
does extend over a broad range of scales in real faults, from
irregularities on the fault surface to the complex geometry of
fault networks. Indeed, spatial irregularity—in the sense of
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strongly pinned and weakly pinned regions in U(x, t)—is a
generic feature of the models we study. However, in our case,
this irregularity is an intrinsic property of the dynamics, as
opposed to some extrinsic property introduced by the modeler.

In this regard, our point of view is the opposite of that taken
by Ben-Zion and Rice (6, 12, 23), who see no evidence in their
calculations that slip complexity can be generated solely by
nonlinear dynamics on smooth faults. They are able, however,
to reproduce observed behaviors by making their models
inherently discrete and/or heterogeneous. There are some
fundamental differences between their calculations and ours.
Ben-Zion and Rice use rate- and state-dependent friction laws
that do not produce the strong instabilities at high slipping
speeds that emerge from our velocity- or slip-weakening laws.
Also, in the work that they have published to date, they use
quasi-static approximations, whereas we must solve the equa-
tions of motion for fully inertial elastodynamics in order to see
the instabilities that generate complexity.

We cannot claim to know which of these approaches ulti-
mately will prove to be the more realistic and useful, but we do
believe that the differences in friction and dynamics explain
the discrepancies between our results and those of others. If
the geometric complexity of real faults is the overwhelmingly
most important source of slip complexity, then quasistatic
models with externally imposed heterogeneities may be most
useful for practical purposes. On the other hand, if intrinsically
smooth faults are deterministically chaotic systems that gen-
erate their own irregularities during unstable slipping motions,
then models of the sort that we have described here will be
essential for progress in earthquake prediction.
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