PHYSICAL REVIEW A

VOLUME 32, NUMBER 2

AUGUST 1985

Images of the critical points of nonlinear maps

Roderick V. Jensen and Christopher R. Myers
Department of Applied Physics, Yale University, New Haven,
Connecticut 06520
(Received 19 February 1985)

An explanation of the peaks of probability distributions of chaotic nonlinear maps is given, as well as an
algorithm for calculating the locations of those peaks. This analysis also provides insights into the nature of

periodic and aperiodic behavior in nonlinear maps.

I. INTRODUCTION

Much attention has recently been given to the properties
of one-dimensional nonlinear maps of the form Xx,+;
= f(x,). In this paper we will consider the much-studied
logistic map given by the equation

Xpp1=ax,(1—x,) , )

for 0<<a=4, x€[0,1]. In particular, we will examine the
images of the extrema, or critical points, of f(x,), which
we will call the boundaries of the map. Analysis of boun-
daries helps to explain many diverse aspects of nonlinear
maps, especially probability distributions in chaotic regions,
the emergence of periodic orbits in such regions, and the ef-
fects of crises.! This description will enable us to better
understand both the deterministic and probabilistic natures
of the dynamics of the map.

An examination of these boundaries was initially motivat-
ed in an attempt to explain peaks in the probability distribu-
tions for nonlinear maps exhibiting chaotic behavior. In the
logistic map, for a > 3.57, there are many values of a which
seem to give rise to chaotic behavior. A histogram of many
iterations for such an a would reveal a probability-
distribution spread over many values of x, with peaks at cer-
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FIG. 1. The asymptotic orbits for the logistic map are plotted as a
function of the control parameter a to form a bifurcation diagram.
The relative density of points in the diagram reflects the structure
of the corresponding invariant measure.
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tain values. As a varies, so do the locations of the peaks.
In a bifurcation diagram of the map (see Fig. 1), these
peaks appear as dark streaks. We ask the following ques-
tion: Why is the probability distribution peaked at certain
values of x? The answer is that the images of the critical
points of the function have singular probability distribu-
tions, which coincide with the regions of high number den-
sity found in the bifurcation diagram.

II. CONSTRUCTION OF BOUNDARIES

The return map defined by Eq. (1) is an inverted parabo-
la, with a maximum at x=0.5. For a given q, the function
cannot attain a value greater than a/4. Therefore the long-
time dynamics of the map are confined to the interval
[f(a/4), a/4]. The first two images of the critical point
delineate the exterior boundaries of the bifurcation diagram;
the dynamics of the map do not fill the entire unit interval
until @ =4. The subsequent images of the critical point are
interior boundaries which correspond to the images of the
critical points of the higher-order iterates of the logistic
map.

The Nth iterate of the logistic map has 2N — 1 local extre-
ma. One of these is always located at x=0.5. The remain-
ing points are grouped in N — 1 pairs, each of which is a dif-
ferent order preimage of x=0.5. Since the images of each
element in the pairs are equal, there are a total of N distinct
images of the 2N — 1 critical points. These N images gen-
erate 2N boundaries. These higher-order boundaries also
delineate regions of the bifurcation diagram.

III. BOUNDARIES AND PROBABILITY DENSITY

In Fig. 2, we have plotted the first eight boundaries of the
logistic map as a function of a for 3.5= a =< 4.0, and super-
imposed this graph on a bifurcation plot of the same region.
For a < 3.57, the accumulation point for the period-
doubling bifurcations, the interior boundaries confine the
periodic orbits. For a > 3.57, the boundaries not only con-
fine the chaotic dynamics of the map, but also correspond
exactly to the regions of high density described previously.
The boundaries deviate from the bifurcation plot during
periodic cycles, since the dynamics of such cycles are
governed by fixed points and not boundaries. But in re-
gions where the map is chaotic, the boundaries form a
skeletal frame which gives shape to the map. We can now
explain the probability distribution seen in the bifurcation
diagram.
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FIG. 2. The location of the first eight images of the critical point
(boundaries) are plotted on the bifurcation diagram to show the
correspondence with the peaks in the invariant probability distribu-
tion.

The number density of trajectories p landing in the neigh-
borhood of some point x is given by the formula

2(x)
POI= 217G
where x; denotes the preimages of the point x.2 Neighbor-
hoods with | f(x;)| <1 will be contracted upon iteration of
the map, thus increasing the number density of the images
of those neighborhoods. Conversely, neighborhoods with
slope greater than one will be expanded, thereby decreasing
number density. The critical point has a slope equaling
zero, so the image of the critical point will have a singular
distribution provided that the critical point has a nonzero
probability density. If the return map behaves like |x — x*|4
in the neighborhood of the critical point x*, then the singu-
lar probability distribution will behave like
1/)x — f(x*)|@=1D/d jn the vicinity of the boundary. In par-
ticular, for quadratic maps like the logistic map, d =2 and

p () ~1//x— £(xM].

Guckenheimer® has proven that for a class of maps (which
includes the logistic map) having no stable periodic orbit,
the set of preimages of the critical point is dense. Thus the
probability density of the critical point is nonzero. Succes-
sive iterations of the critical point will map the singularity
from boundary to boundary, with a general decline in densi-
ty, since in chaotic regions, the map has, on the average, an
absolute slope greater than one, by definition of the (posi-
tive) Lyapunov exponent. If many boundaries come togeth-
er for a given value of a, however, the density at that point
may be greater than the densities at lower-order boundaries.

0}

IV. INTERSECTIONS OF BOUNDARIES

The intersection of boundaries signifies the existence of a
fixed point or periodic orbit at the point of intersection.

1223

Boundaries are successive images of the critical point(s), so
if a boundary lands on a fixed point or periodic orbit, suc-
cessive boundaries will also land on that point or orbit.

If the fixed point or orbit in question is stable, the boun-
daries join to form a stable perodic cycle. Boundaries
coalesce and align along the cycle, interesecting at the
superstable cycle. This is especially evident in Fig. 2 for
a = 3.83, where the stable period-3 cycle appears. The real-

_ization that every stable orbit is characterized by this type of

boundary coalescence enables one to identify stable cycles
that might otherwise be too narrow to distinguish.

If the fixed point or orbit is unstable, however, the map is
chaotic for that value of a. Singer* has proven that if a
function with a single critical point has a stable periodic or-
bit, then the critical point will be attracted to it. At those
points where boundaries intersect with an unstable fixed
point the map does not have a stable periodic orbit. Misi-
urewicz’® has built on this to prove that if a function has no
stable periodic orbit and the critical point maps into an un-
stable fixed point, then the function has an absolutely con-
tinuous invariant measure, and is ergodic. And, finally,
Jakobson® has proven that the set of parameter values for
which the map has an absolutely continuous invariant mea-
sure has positive measure. Locating the unstable intersec-
tions of boundaries is a simple way to find chaotic behavior.

Two different behaviors of the map are possible at the
unstable intersection of boundaries. One of these occurs
when the intersection is imbedded within the bifurcation di-
agram, such as at.a = 3.79 in Fig. 2. There the map is sim-
ply chaotic. If the intersection takes place at the edge of a
region delineated by a boundary, however, a crisis occurs.
A crisis has been defined by Grebogi, Ott, and Yorke as a
collision between a chaotic attractor and a coexisting un-
stable fixed point or periodic orbit.! The theory of crises
distinguishes between ‘‘boundary” crises and ‘‘interior’’
crises, the former bringing about a destruction of the chaot-
ic attractor and its basin of attraction, and the latter causing
a sudden change in the size of the attractor.
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FIG. 3. The images of the critical points are plotted on the bifur-
cation diagram for values of a just after the period-3 cycle to illus-
trate the explosion of boundaries at a crisis point at a == 3.8568.
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To understand an interior crisis, consider the period-3 cy-
cle that emerges at a = 3.83. This cycle undergoes period-
doubling bifurcation, accumulating in chaos. Yet the
dynamics of the map in this chaotic region beyond the accu-
mulation point are constrained to three narrow bands, until
the intersection of an unstable period-3 orbit with these
bands brings about a crisis. Figure 3 is a magnification of
the bifurcation/boundary diagram of Fig. 2, in the region of
this crisis, with some boundaries omitted. Prior to the
crisis, at @ =3.8568, higher-order boundaries are confined
by the lower-order boundaries. At the point of intersection,
however, all the interior boundaries break out of the regions
that contained them. Lower-order boundaries diverge gra-
dually from the confining regions, but higher-order boun-
daries, which oscillate rapidly, escape at very steep angles to
the confining boundaries. These high-order boundaries, ex-
ploding out of the confining region at the point of crisis, are
associated with the sudden widening of the attractor.

The same phenomenon occurs at the boundary crisis, for
a=4. All higher-order boundaries escape from the region
of confinement, with lower-order boundaries escaping gra-
dually, and higher-order curves racing away. But in this
crisis, there are no remaining boundaries to confine the
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dynamics of the map, so the attractor becomes infinite, and
is destroyed.

V. CONCLUSION

Examination of boundaries enables us to predict, by a
simple algorithm, the regions of high probability density for
nonlinear maps exhibiting stochastic behavior. It also allows
us to predict which values of some controlling parameter
will give rise to such behavior, and which will produce
stable periodic cycles. Although this paper has examined
only the logistic map, with a single extremum, this method
of analysis also works for maps with multiple extrema, such
as the circle map, given by the equation’

Xp+1=X,+ bsin(2wx,) +7 (mod 1).
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