
Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 1

In-Class “Guerrilla” Development of MPI Examples

Week 5 Lecture Notes

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 2

Guerrilla Development?

•  guer ril´la (n.) - A member of an irregular, usually indigenous military or
paramilitary unit operating in small bands in occupied territory to harass and
undermine the enemy, as by surprise raids.
The American Heritage Dictionary of the English Language, Fourth Edition

•  “Guerrilla Development - Software development in an environment
unsupportive of the effort. The adversity can take the form of active
management encumbrances (ridiculous budget/time/staffing constraints,
and the like).... Guerrilla Developers find a way to win, despite the odds,
and work to prevent their project from becoming a Death March.”
http://www.artima.com/weblogs/viewpost.jsp?thread=5414

•  “The Guerrilla Experience means total immersion in social coding. Multiple
instructors keep you engaged throughout the entire learning process
collaborating, competing, and coding.” – DevelopMentor (a Microsoft
partner)

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

What’s the Best Way to Receive a Message
From Any of Several Possible Sources?

•  MPI_Probe and MPI_Recv
•  MPI_Irecv and MPI_Waitany
•  MPI_Recv(…MPI_ANY_SOURCE…)

3

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 4

Shared Memory Programming Using Basic OpenMP

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

What is Shared Memory Programming?

•  Physically: processors in a computer share access to the same RAM

•  Virtually: threads running on the processors interact with one another
via shared variables in the common address space of a single process

•  Making performance improvements to serial code tends to be easier
with multithreading than with message passing parallelism

–  Message passing usually requires the code/algorithm to be redesigned
–  Multithreading allows incremental parallelism: take it one loop at a time

•  Clusters today are commonly made up of multiple processors per
compute node; using OpenMP with MPI is a strategy to improve
performance at the two levels of shared and distributed memory

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 6

Fork & Join

•  Multi-threaded programming is the
most common shared-memory
programming methodology.

•  A serial code begins execution. The
process is the master thread or only
executing thread.

•  When a parallel portion of the code is
reached the Master thread can “fork”
more threads to work on it.

•  When the parallel portion of the code
has completed, the threads “join”
again and the master thread
continues executing the serial code.

fork

join

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 7

What is OpenMP?

•  Every system has its own threading libraries
–  Can be quite complicated to program
–  Generally not portable
–  Often optimized to produce the absolute best performance

•  OpenMP has emerged as a standard method for shared-memory
programming

–  Similar to the way MPI has become the standard for distributed-memory
programming

–  Codes are portable
–  Performance is usually good enough

•  Consists of: compiler directives, API calls, environment variables

•  Compiler support
–  C, C++ & Fortran
–  Microsoft, Intel (icc -openmp), and GNU (gcc -fopenmp)

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 8

How Does OpenMP Work, Typically?

•  “for” loops often point to a naturally parallel section of the code

•  Using compiler directives, we show the compiler where it can
automatically parallelize a loop for us

–  In C & C++ these directives are called “pragmas” (pragmatic information)
–  OpenMP pragmas start with #pragma omp
–  Pragmas go in front of for loops to tell the compiler that they can be parallelized

•  Loops that can be parallelized have some requirements
–  Run time system must know how many iterations will be executed
–  Loops cannot have logic that allow them to exit early: break, return, exit etc.
–  Loops must have “canonical shape”

for (i = start; i < end; i++)

 <= ++i
 > i--

 >= --i
 i+=inc
 i-=inc

 i=i+inc
 i=i–inc

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

#include <stdio.h>
#include <omp.h>
#include <malloc.h>

int main(int argc, char **argv)
 {
 int i,workers;
 int *a,*b,*c;
 int mult=256000;
 double start, end;

 workers = omp_get_max_threads();
 printf(“%d parallel workers”,workers);
 a = malloc(workers*mult*sizeof(int));
 b = malloc(workers*mult*sizeof(int));
 c = malloc(workers*mult*sizeof(int));

 start = omp_get_wtime();

Program omp_dp1.c – 1 of 2

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

 #pragma omp parallel for
 for (i=0;i<workers*mult;i++)
 {
 a[i]=i;
 b[i]=i;
 c[i]=i;
 a[i] = b[i] + c[i];
 }
 end = omp_get_wtime();
 printf ("Parallel Loop took %.04f seconds\n",end-start);
 start = omp_get_wtime();
 for (i=0;i<workers*mult;i++)
 {
 a[i]=i;
 b[i]=i;
 c[i]=i;
 a[i] = b[i] + c[i];
 }
 end = omp_get_wtime();
 printf ("Serial Loop took %.04f seconds\n",end-start);
 return 0;
 }

Program omp_dp1.c – 2 of 2

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

-sh-3.1$ icc -openmp -o i_omp_dp1 omp_dp1.c
omp_dp1.c(18): (col. 3) remark: OpenMP DEFINED LOOP WAS
PARALLELIZED.
omp_dp1.c(29): (col. 3) remark: LOOP WAS VECTORIZED.
omp_dp1.c(19): (col. 3) remark: LOOP WAS VECTORIZED.
-sh-3.1$./i_omp_dp1
8 parallel workers
Parallel Loop took 0.0096 seconds
Serial Loop took 0.0179 seconds
-sh-3.1$
-sh-3.1$ gcc -fopenmp -o omp_dp1 omp_dp1.c
-sh-3.1$./omp_dp1
8 parallel workers
Parallel Loop took 0.0106 seconds
Serial Loop took 0.0403 seconds
-sh-3.1$ gcc -fopenmp -o omp_dp1 -O3 omp_dp1.c
-sh-3.1$./omp_dp1
8 parallel workers
Parallel Loop took 0.0088 seconds
Serial Loop took 0.0179 seconds

Comparison of icc and gcc on an OpenMP Code

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 12

Scheduling Loops
 #pragma omp parallel for schedule(sched_type)

Domain Decomposition Analogs
•  schedule(static) = block [usually this is the default]

–  statically allocate (Total Iterations/Total Threads) contiguous iterations per thread
•  schedule(static, chunk) = block cyclic

–  Interleaved allocation of “chunks” (chunk = number of iterations) to each thread
Master-Worker Analogs
•  schedule(dynamic) = fine-grained master-worker

–  Iterations dynamically allocated to each thread, 1 at a time
•  schedule(dynamic, chunk) = coarse-grained master-worker

–  Iterations dynamically allocated to each thread, 1 chunk at a time
Unique to OpenMP
•  schedule(guided) = coarse- to fine-grained master-worker
•  schedule(guided, chunk) (fill in the cracks)

–  Dynamic allocation of iterations using “guided self-scheduling”
–  Large chunks shrink exponentially to a minimum size chunk (1 if not specified)
–  First chunk goes like n/np; subsequent chunks go like (n-ndone)/np

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 13

Basic OpenMP Functions

•  omp_get_num_procs
int procs = omp_get_num_procs() //number of CPUs in machine

•  omp_get_num_threads
int threads = omp_get_num_threads() //# of active threads

•  omp_get_max_threads
printf("%d threads will be started\n",omp_get_max_threads());

•  omp_get_thread_num
 printf("Hello from thread id %d\n",omp_get_thread_num());

•  omp_set_num_threads – query this setting with omp_get_max_threads
 omp_set_num_threads(procs * atoi(argv[1]));

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 14

#include <stdio.h>
#include <omp.h>
#include <unistd.h>

int main(int argc, char **argv)
 {
 char host[80];
 int procs,i,a,b,c,t,m;

 if (gethostname(host,sizeof(host)) != 0)
 {
 printf("ERROR getting hostname\n");
 return 30;
 }
 printf("Hello from %s\n", host);
 // Determine the number of physical processors
 procs = omp_get_num_procs();
 printf("%s has %d processors\n",host,procs);

Program omp_helloworld.c – 1 of 2

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

 /* Determine max threads defined by default through
 through the OMP_NUM_THREADS environment variable */
 printf("OMP_NUM_THREADS = %d\n",omp_get_max_threads());
 printf("OMP_DYNAMIC = ");
 if (!omp_get_dynamic())
 {
 printf("FALSE\n");
 // Set the number of threads, it will be exact
 printf("Setting NUM_THREADS = %d\n",procs * atoi(argv[1]));
 omp_set_num_threads(procs * atoi(argv[1]));
 }
 else printf("TRUE\n");
 /* Report maximum number of threads that can be created, the
 actual number will be determined dynamically at runtime */
 printf("Maximum number of threads = %d\n",omp_get_max_threads());
 #pragma omp parallel
 printf("Hello from thread id %d\n",omp_get_thread_num());
 return 0;
}

Program omp_helloworld.c – 2 of 2

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 16

OpenMP Environment Variables

•  OMP_DYNAMIC
–  Enables (if TRUE) or disables (if FALSE) dynamic loop scheduling
–  Use of omp_set_dynamic tends to be useful if your code includes the OpenMP nowait

clause. When nowait is used then subsequent parallel sections may be arrived at prior to
having the full complement of threads available for processing. If the system is directed to
use 4 threads and if prior sections include the nowait clause then it is possible, as an
example, to arrive at a parallel for loop with 3 of the 4 threads ready for execution. If dynamic
is 0 then 4 threads are allocated with 1 of the thread execution range blocked until the prior
code on the busy thread completes. If dynamic is .not. 0 (e.g. 1) then the runtime system
could elect to distribute the processing amongst the 3 available threads.

•  OMP_NUM_THREADS
–  Sets the number of threads to use during parallel execution
–  Is roughly equivalent to “mpiexec -n”, but pertains only to a single process on a single

machine
–  Can be overridden by a call to omp_set_num_threads

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 17

One More OpenMP Environment Variable:
 OMP_SCHEDULE

•  schedule(runtime)
–  Schedule type chosen at runtime based on the value of the

OMP_SCHEDULE environment variable

–  Example:
Set OMP_SCHEDULE=“dynamic,10”

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 18

Private Variables
private clause

•  Tells compiler to allocate a private copy of a variable for each thread
•  Without it, all threads would clobber the same shared memory location

–  Result would be nondeterministic

 start = omp_get_wtime();
 h = 1.0 / (double) n;
 area = 0.0;
 #pragma omp parallel for private(x)
 for (i = 1; i <= n; i++)
 {
 x = h * ((double)i - 0.5);
 area += (4.0 / (1.0 + x*x));
 } // for
 pi = h * area;
 end = omp_get_wtime();

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 19

Critical Sections
#pragma omp critical

•  Forces threads to be mutex (mutually exclusive)
–  Only one thread at a time executes the given code section

•  Here, keeps two threads from updating “area” at once
–  The += operator is not atomic (load, add, store)
–  Results are non-deterministic due to a “race condition”
–  With a critical section , operation becomes atomic in effect

 start = omp_get_wtime();
 h = 1.0 / (double) n;

 area = 0.0;
 #pragma omp parallel for private(x)

 for (i = 1; i <= n; i++)
 {
 x = h * ((double)i - 0.5);

 area += (4.0 / (1.0 + x*x));
 } // for

 pi = h * area;
 end = omp_get_wtime();

 start = omp_get_wtime();
 h = 1.0 / (double) n;

 area = 0.0;
 #pragma omp parallel for private(x)

 for (i = 1; i <= n; i++)
 {
 x = h * ((double)i - 0.5);

 #pragma omp critical
 area += (4.0 / (1.0 + x*x));

 } // for
 pi = h * area;
 end = omp_get_wtime();

Wrong Right

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 20

Reductions
reduction(<operator>:variable)

 start = omp_get_wtime();
 h = 1.0 / (double) n;

 area = 0.0;
 #pragma omp parallel for private(x) reduction(+:area)

 for (i = 1; i <= n; i++)
 {
 x = h * ((double)i - 0.5);

 area += (4.0 / (1.0 + x*x));
 } // for

 pi = h * area;
 end = omp_get_wtime();

•  Reduction clause can be added to #pragma omp parallel for
•  Works like MPI_Reduce
•  Reduction operators for C & C++:

 Operator Meaning Types Initial Value
 + Sum float,int 0
 * Product float,int 1
 & Bitwise and int all bits 1
 | Bitwise or int 0
 ^ Bitwise exclusive or int 0
 && Logical and int 1
 || Logical or int 0

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 21

firstprivate & lastprivate clauses

•  “firstprivate” tells compiler to create private variables with the same initial
value as that of the Master thread.

–  firstprivate variables are initialized ONCE/thread

•  “lastprivate” tells compiler to copy back to the Master thread the private copy
executed on the “sequential last iteration” of a loop. (This is the last iteration
that would be executed if the code were serial)

X[0] = complex_function()
#pragma omp parallel for private(j) firstprivate(x)
for (i=0; i<n; i++)
 {
 for (j=1; j<4; j++) x[j] = g(i,x[j-1]);
 answer[i] = x[1] –x[3];
 }

#pragma omp parallel for private(j) lastprivate(x)
for (i=0; i<n; i++)
 {
 x[0] = 1.0;
 for (j=1; j<4; j++) x[j] = x[j-1] * (i+1);
 sum_of_powers[i] = x[0] + x[1] + x[2] + x[3];
 }
n_cubed = x[3];

Note: examples from pages 412-413 in the text

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 22

single Pragma

void main(int argc, char **argv)
 {
 int i,a,b;

 //Determine how many threads set by OMP_NUM_THREADS environment variable
 printf("%d threads possible\n",omp_get_max_threads());
 #pragma omp parallel private(i)
 for (i=0;i<4;i++)
 {
 #pragma omp single
 printf("Currently %d threads in use\n",omp_get_num_threads());
 printf("thread %d working on i=%d\n",omp_get_thread_num(),i);
 a = i;
 b = 2 * i;
 a += b;
 }
 }

•  Code section will be executed by just a single thread

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

OpenMP Internal Control Variables
(ICVs) and How to Set Them

#pragma omp
clause, if used

overrides call to API
routine [related query]

overrides setting of
environment variable

overrides
initial value of

(none) omp_set_dynamic()
omp_get_dynamic()

OMP_DYNAMIC dyn-var

num_threads omp_set_num_threads()
omp_get_max_threads()

OMP_NUM_THREADS nthreads-var

(none) omp_set_nested()
omp_get_nested()

OMP_NESTED nest-var

schedule omp_set_schedule()
omp_get_schedule()

OMP_SCHEDULE run-sched-var

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 24

Row-Major (C) vs. Column-Major (Fortran)

Assume the following Matrix a[i][j]: C Loop:
A11 A12 A13 for (i=1; i<=3; i++)
A21 A22 A23 for (j=1;j<=3;j++)
A31 A32 A33 a[i][j]

Row-Major (C) Stores the values in memory
A11 A12 A13 A21 A22 A23 A31 A32 A33 ---> Higher addresses
j index changes faster then the i index

Column-Major (Fortran) Stores the values in memory
A11 A21 A31 A12 A22 A32 A13 A23 A33 ---> Higher addresses
i index changes faster than the j index

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 25

Inverting Loops Example

for (i=2; i<=m; i++)

 for (j=1;j<=n;j++)

 a[i][j] = 2 * a[i-1][j]

Becomes:

#pragma parallel for private(i)

for (j=1;j<=n;j++)

 for (i=2; i<=m; i++)

 a[i][j] = 2 * a[i-1][j]

Note: examples from page 417 in the text

•  Columns can be updated simultaneously (not rows)
•  Inverting the i & j loops reduces the number of fork & joins
•  Consider how transformation affects the cache-hit rate

A11 A12 A13

A21 A22 A23

A31 A32 A33

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz 26

Consider how array is referenced in Memory

for (i=2; i<=m; i++)

 for (j=1;j<=n;j++)

A21 & A11 i=2, j=1 to 3

A22 & A12

A23 & A13

A31 & A21 i=3, j=1 to 3

A32 & A22

A33 & A23

for (j=1;j<=n;j++)

 for (i=2; i<=m; i++)

A21 & A11 j=1 i=2 to 3

A31 & A21

A22 & A12 j=2 i=2 to 3

A32 & A22

A23 & A13 j=3 i=2 to 3

A33 & A23

Note: examples from page 417 in the text

A11 A12 A13

A21 A22 A23

A31 A32 A33

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Conditional Execution of Loops
if clause

•  Initiating a parallel for adds to overhead due to thread forking
•  Only makes sense to do a parallel for if loop’s trip count (n) is high
•  Use the if clause to avoid parallel execution when n is too small

 start = omp_get_wtime();
 h = 1.0 / (double) n;

 area = 0.0;
 #pragma omp parallel for private(x) reduction(+:area) if(n > 5000)

 for (i = 1; i <= n; i++)
 {
 x = h * ((double)i - 0.5);

 area += (4.0 / (1.0 + x*x));
 } // for

 pi = h * area;
 end = omp_get_wtime();

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Parallelizing montepi.c with OpenMP

•  Use omp_get_num_threads, omp_get_thread_num
•  Separate parallel and for pragmas

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Functional Parallelism Example

 v = alpha();
 W = beta();

 x = gamma(v,w);
 y = delta();

 printf(“%6.2f\n”, epsilon(x,y));

 α
 β

 γ

 ε

 δ

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Functional Parallelism with OpenMP, 1
parallel sections, section pragmas

 #pragma omp parallel sections
 {
 #pragma omp section //optional
 v = alpha();
 #pragma omp section
 W = beta();
 #pragma omp section
 y = delta();
 }
 x = gamma(v,w);
 printf(“%6.2f\n”, epsilon(x,y));

Steve Lantz
Computing and Information Science 4205
www.cac.cornell.edu/~slantz

Functional Parallelism with OpenMP, 2
separating parallel from sections

 #pragma omp parallel
 {
 #pragma omp sections
 {
 #pragma omp section //optional
 v = alpha();
 #pragma omp section
 W = beta();
 }
 #pragma omp sections
 {
 #pragma omp section //optional
 x = gamma(v,w);
 #pragma omp section
 y = delta();
 }
 }
 printf(“%6.2f\n”, epsilon(x,y));

