Week 2 Lecture Notes

Solar-Terrestrial Physics —

The Sun’s Atmosphere, Solar Wind,
and the Sun-Earth Connection
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The Solar Coronais the Sun’s Extended Atmosphere
Scattered light makes it visible during a total eclipse of the Sun

16 February 1980: White Light

“helmet streamers”

Saurce: High Altitude Observatory Archives HAD A-CQ9
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X-Rays Reveal 3D Magnetic Loops and Arches
The corona is full of magnetic structures at all scales

http://www.lmsal.com/SXT/homepage.html
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Close-Up of Some Magnetic Loops

Data from the TRACE
satellite at 171 A (EUV)

*QuickTime movie of Yohkoh
SXT images shows the 3D
structure of magnetic loops
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Coronal Holes
Usually found at the poles, they can extend to lower latitudes

06 January 1983 07 February 19893

~ource: Tohkoh Secience Team HAO A—-D11
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The Coronais a Very Dynamic Place!
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The Restless Corona (from SOHO)
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Solar Flares
Plasma catastrophes trigger bursts of radiation

2006/11/11 10:32:53
XRT Al poly filter exp. 129msec
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Flares Often Occur Along Coronal Arcades

An arcade marks a seam between regions of opposite polarity.
Shear motion along the seam can cause it to flare all at once.
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; Flare Movie from SDO
First one flash, then more, then a shock that rearranges the global field!
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Electrical and Computer Engineering 5860 *See the sequence in the QuickTime movies

www.cac.cornell.edu/~slantz




Flares Are Also Associated with Flux Emergence

Hinode initial results page: http://solar-b.nao.ac.jp/news_e/20061127 press_e
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X-Ray Emission Above a Sunspot
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The chromosphere lies just above the photosphere. Here, magnetic features are
highlighted by spectral lines like Ha, Ca Il K, and Ca |l H (image at right). When
viewed in He, bright areas near sunspots are called “plage” (French for “beach”).
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Sunspot Number May Influence Terrestrial Climate

* More sunspots means more light—Dbright faculae (“little torches”) outweigh
dark sunspots. Rough explanation: toward the limb, strong magnetic fields
create a sort of window into the deep, hot sides of convection cells.

« Just one more reason why understanding solar magnetism is important
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The Solar Corona
Why is the corona hot?

Observation: coronal radiation implies very high temperatures
— Unusual spectral lines can be traced to highly ionized atoms, e.g., Fe XIV
— The corona is bright in X-rays with an equivalent blackbody temperature ~10° K
Heat cannot just flow to a region of higher temperature
— Violates the 2"d law of thermodynamics!
Something must be doing mechanical work on the plasma
— Magnetic energy is dominant in the corona
— Work can be done against Lorentz forces to build up magnetic energy further
— Ohmic heating of the plasma occurs where current is flowing
— Points to a heating mechanism mediated by magnetic fields
Two possible scenarios:

— Waves from the photosphere (and below) travel up along the magnetic field,
depositing energy as they go

— Flares, microflares, nanoflares... solar flares of all scales are always happening,
leading to magnetic reconnection and heating

Steve Lantz
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Problems with the Heating Models
Due to the low resistivity of the corona

 The corona makes a very good cavity for trapping waves, but not for
dissipating them.

— Magnetosonic waves don’t propagate up through the chromosphere.
— Shear Alfven waves propagate but are scarcely damped.

* Reconnection rates are slow. Nanoflares are not (yet) observed.
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MHD Magnetic Energy Equation — 1

The starting point is the full electromagnetic energy equation, with

no approximations, which can be derived from Maxwell's equations.
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MHD Magnetic Energy Equation — 2
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MHD Magnetic Energy Equation — 3
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MHD Magnetic Energy Equation — 4
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MHD Magnetic Energy Equation — 5
Final form

After combining and rearranging all terms that involve v, the result is:
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Notice that the original Poynting flux due to v has been largely cancelled out
by terms representing work against the Lorentz force!

Only two terms with v are left:
— A simple advection term (moved to the left-hand side)
— A term representing loss of magnetic energy due to sideways spreading of flux

The only real energy sink is ohmic heating, j%/c
One can equally well derive this result from the MHD induction law
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Alfvén Waves in MHD — 1
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Alfvén Waves in MHD — 2
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Alfvén Waves in MHD — 4
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Why Are the Alfvén Waves Damped?

- Ideal wave (below) depends on transverse, “frozen-in” displacements of B,
* Resistivity weakens the necessary currents, causing the amplitude to slip

max max max max max
BX _jy _BX jy Bx
4 | 4 >
| X ; O -
4 | 4 >
| X ; © — B,
4 | 4 >
| X ; O -
maxi max max max field line displacements
-V, AX vV, —AX and velocities

1) Ideal right-traveling wave goes like exp(iot — 1kz) — j, = —IkB, (c/47)

2) Using w=kv, 1 iav, =] B,/(Cpy), ikvpy, =-kB, (V,?/B,), |V, /vy, =-B,/B,

3) Integrate over dt to show that fluid and field line displacements are equal
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The Lundquist Number in the Solar Corona

* The Lundquist number is the dimensionless ratio of two timescales:
— Alfvén wave travel time over a distance L
— Resistive diffusion time over the same distance
 Itis equal to the magnetic Reynolds number divided by the Alfvén Mach
number, R, /M,
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Estimate of Heating Rate Due to Alfvén Wave Damping
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Exponentially decaying wave is identical: o/ét| B.,?/(87) | = 20 | B.,?/(87) |

..How does this stack up against the nanoflare/reconnection model?
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Sweet-Parker Model of Reconnection — 1

It's only a 2D model, but it takes into account that the reconnection
region must be very thin when the diffusivity is extremely low

How big can the inflow be, given these geometric constraints?
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Sweet-Parker Model of Reconnection — 2

We estimate the layer thickness from MHD magnetic induction,
and the outflow speed by assuming it is driven by the Lorentz force
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Once again, the Lundquist number comes into play...
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Sweet-Parker Model of Reconnection — 3

Unfortunately, the low rate of magnetic energy conversion is reduced
even further if L also approximates distance between current sheets:
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It is possible to improve the (Lu)-12 to In(Lu) through better models, such as
the ones by Petschek or by Sonnerup and Priest, which have refinements:

* The plasma is compressible—fast or slow magnetosonic shocks allow u > v,
* The incoming magnetic field is bent by shocks, so outflow is broader (in 2D)

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz

34



Spicules/Fibrils (on the limb/disk)

. beee SN AR
Short-lived, tall jets in the Ha chromosphere may be driven by p-modes

Steve Lantz Credit: Royal Swedish Academy of Sciences
Electrical and Computer Engineering 5860 *See QuickTime movie of spicules in action
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Filaments and Prominences Viewed in Ha
They are condensations of cooler gas suspended in the corona

Scurce: NOAA/SEL/USAF ' HAO A—0O05
Steve Lantz
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Prominences Can Be Very... Prominent!

June 1946: Ha photograph

Source: High Altitude Observatory Archives
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Filaments Tend to Form on Magnetic Neutral Lines
This gives us a clue about what holds them up

Ha image [close up] Magnetogram [close up]

HAO A-008
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Huge Eruptive Prominence Captured by STEREO
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Zoomed-In Animation of Eruptive Prominence
Watch for the twist in the plumes of plasma as they descend
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A Coronal Mass Ejection Witnessed by SOHO/LASCO
CME events are often associated with eruptive prominences
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Coronal Structures —1
Possible MHD equilibria for long-lived formations
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Coronal Structures — 2
Prominences and their eruption
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Can get the prominence to eject by squeezing the footpoints
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Coronal Structures — 3
Creating a solar flare

poty .“)
W o e £ ﬁw-#/,z,m S |
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Can get the arcade to flare by shearing or twisting the footpoints

Coronal structures and dynamics can have consequences for Earth...

» Equilibrium structures (prominences, arcades) can suddenly lose stability,
ejecting plasma and/or radiation into interplanetary space

» Low-level disturbances (waves, nanoflares) apparently heat the steady-state
corona to high temperatures
— This turns the corona into a much stronger X-ray source than the photosphere
— As we will see, it drives a steady-state plasma outflow, the solar wind
Steve Lantz
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Solar Wind Formation
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Parker (1958) Solar Wind Equation — 1
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Parker (1958) Solar Wind Equation — 2
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Parker (1958) Solar Wind Equation — 3
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The subsonic “solar breeze” solution is also permitted but is not observed
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(1) Show that field lines are Archimedean spirals—the same pattern made by
streams of water from a rotating lawn sprinkler when viewed from above:
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Spiral Magnetic Field in the Solar Wind — 3
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Sum of an Archimedean spiral and a hyperbolic spiral
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Spiral Magnetic Field in the Solar Wind — 4
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The 3D Current Sheet: “Ballerina Skirt”

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz




Ulysses Main Results

* There are two distinct plasma
regimes in the solar wind

— Near the equator, speed (red line) is
low and density (blue line) is high.
Composition is typical of the corona.

— At high to mid latitudes, speed is
high and density is low, with less
variability in both. Composition is
typical of the photosphere.

— Speed is approximately 750 km/s

everywhere except near the equator.

* The solar wind’s magnetic field is not
based on a dipole
— A dipole field would be twice as

strong over the poles; in the solar
wind, it is near-uniform with latitude.

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz
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Spiral Magnetic Field in the Solar Wind — 5
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Shocks in the Interplanetary Medium
Where a fast corotating stream follows a slow one

Jan 13, 198%

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz
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Spiral Magnetic Field in the Solar Wind — 6
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e Sector crossings involving shock compression have a greater effect on
geospace than those involving rarefactions

* To see why, first need to understand the steady state of interactions
between the near-Earth environment and the solar wind...

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz
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Chapman-Ferraro (1930) Magnetosphere
(Figure from Chapman and Bartels, 1940)
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e Solar wind is like a superconductor that excludes the sunward dipole field
« At planar boundary, a current sheet forms; field is summed with image dipole
» Separatrix QQ defines the “cusp” latitude associated with auroral ovals

Steve Lantz

Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz



Anatomy of the Earth’s Magnetosphere
Current Sheets at the Magnetopause and Across the Tall

Bow Shock
g e Magnetopause

Magnetosheath

At the “nose” of the magnetosphere, the magnetic pressure of the Earth’s
squeezed dipole field can stand up to the ram pressure of the solar wind

Steve Lantz Figure from Kivelson and Russell
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz
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Coronal Mass Ejections
How to launch a “magnetic cloud”
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If aimed at Earth, a CME drastically changes the momentum (velocity
and density) of the solar wind that impinges on the magnetosphere

Steve Lantz
Electrical and Computer Engineering 5860
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Magnetic Reconnection and Plasmoid Ejection
Magnetic could contains southward IMF

Steve Lantz
Electrical and Computer Engineering 5860
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*Play QuickTime movie of solar wind gusts hitting the magnetosphere
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Cusp Aurora Due to Reconnection at High Latitude
Magnetic cloud contains northward IMF

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz

http://web.ift.uib.no/~nikost/research.html





Solar Flares

Geomagnetic

Storms

Solar Maximum:

* Increased flares, solar mass ejections,
radiation belt enhancements.

« 100 Times Brighter X-ray Emissions
0.1% Brighter in Visible

* Increased heating of Earth’s upper
atmosphere: solar event induced
ionospheric effects.

Declining Phase, Solar Mnimum:

+ High speed solar wind streams, solar

mass ejections cause geomagnetic storms.

NS

Year > 98 00 02 04 06 08

10 12 14 16 18

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz
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First-Ever 3D Images of the Sun from STEREO —
NASA's Solar TErrestrial RElations Observatory satellites

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz

http://www.nasa.gov/mission_pages/stereo/news/stereo3D_press.html




STEREO Images — 2
Spicules, Polar Coronal Hole, Prominence

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz




STEREO Images — 3
Active Regions

Steve Lantz * i i I i i
Electrical and Computer Engineering 5860 See QUICkTIme movies for 3D animations
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