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Solar-Terrestrial Physics –

The Sun’s Atmosphere, Solar Wind,
and the Sun-Earth Connection

Week 2 Lecture Notes
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The Solar Corona is the Sun’s Extended Atmosphere
Scattered light makes it visible during a total eclipse of the Sun

“helmet streamers”
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X-Rays Reveal 3D Magnetic Loops and Arches
The corona is full of magnetic structures at all scales

http://www.lmsal.com/SXT/homepage.html
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Close-Up of Some Magnetic Loops

Data from the TRACE 
satellite at 171 Å (EUV)

*QuickTime movie of Yohkoh
SXT images shows the 3D
structure of magnetic loops
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Coronal Holes
Usually found at the poles, they can extend to lower latitudes
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The Corona is a Very Dynamic Place!
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The Restless Corona (from SOHO)
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Solar Flares
Plasma catastrophes trigger bursts of radiation
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Flares Often Occur Along Coronal Arcades

(TRACE image)

An arcade marks a seam between regions of opposite polarity.
Shear motion along the seam can cause it to flare all at once.
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Flare Movie from SDO
First one flash, then more, then a shock that rearranges the global field!

*See the sequence in the QuickTime movies
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Flares Are Also Associated with Flux Emergence

Hinode initial results page: http://solar-b.nao.ac.jp/news_e/20061127_press_e
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The Corona in X-Rays from Solar Max to Min

http://en.wikipedia.org/wiki/File:Yohkoh_solar_cycle.jpg
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Sunspots and
Active Regions

This was the most 
highly resolved solar 
image ever taken by 
the 1-meter Swedish 
Solar Telescope 
(SST) on La Palma.

Credit: Royal Swedish 
Academy of Sciences, 
2002

• Dark patches: 
umbrae

• Less-dark streaks: 
penumbrae  
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X-Ray Emission Above a Sunspot
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Evershed Flow in a Sunspot Penumbra

The chromosphere lies just above the photosphere.  Here, magnetic features are 
highlighted by spectral lines like Hα, Ca II K, and Ca II H (image at right).  When 
viewed in Hα, bright areas near sunspots are called “plage” (French for “beach”).
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Sunspot Number May Influence Terrestrial Climate

• More sunspots means more light—bright faculae (“little torches”) outweigh 
dark sunspots.  Rough explanation: toward the limb, strong magnetic fields 
create a sort of window into the deep, hot sides of convection cells.

• Just one more reason why understanding solar magnetism is important
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The Solar Corona
Why is the corona hot?

• Observation: coronal radiation implies very high temperatures
– Unusual spectral lines can be traced to highly ionized atoms, e.g., Fe XIV
– The corona is bright in X-rays with an equivalent blackbody temperature ~106 K

• Heat cannot just flow to a region of higher temperature
– Violates the 2nd law of thermodynamics!

• Something must be doing mechanical work on the plasma
– Magnetic energy is dominant in the corona
– Work can be done against Lorentz forces to build up magnetic energy further
– Ohmic heating of the plasma occurs where current is flowing
– Points to a heating mechanism mediated by magnetic fields

• Two possible scenarios:
– Waves from the photosphere (and below) travel up along the magnetic field, 

depositing energy as they go
– Flares, microflares, nanoflares… solar flares of all scales are always happening, 

leading to magnetic reconnection and heating
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Competing Models of Coronal Heating
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Problems with the Heating Models
Due to the low resistivity of the corona

• The corona makes a very good cavity for trapping waves, but not for 
dissipating them.

– Magnetosonic waves don’t propagate up through the chromosphere.
– Shear Alfven waves propagate but are scarcely damped.

• Reconnection rates are slow.  Nanoflares are not (yet) observed.
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MHD Magnetic Energy Equation – 1

The starting point is the full electromagnetic energy equation, with
no approximations, which can be derived from Maxwell’s equations.
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MHD Magnetic Energy Equation – 2
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MHD Magnetic Energy Equation – 3
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MHD Magnetic Energy Equation – 4
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MHD Magnetic Energy Equation – 5
Final form

• After combining and rearranging all terms that involve v, the result is:

• Notice that the original Poynting flux due to v has been largely cancelled out 
by terms representing work against the Lorentz force!

• Only two terms with v are left:
– A simple advection term (moved to the left-hand side)
– A term representing loss of magnetic energy due to sideways spreading of flux

• The only real energy sink is ohmic heating, j 2/σ
• One can equally well derive this result from the MHD induction law
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Alfvén Waves in MHD – 1
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Alfvén Waves in MHD – 2

2



27

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz

Alfvén Waves in MHD – 3
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Alfvén Waves in MHD – 4
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Why Are the Alfvén Waves Damped?

• Ideal wave (below) depends on transverse, “frozen-in” displacements of Bz

• Resistivity weakens the necessary currents, causing the amplitude to slip

max
Bx

max
−jy

max
−Bx

max
jy

max
Bx

Bz

field line displacements
and velocities

max
Δx

max
−Δx

1) Ideal right-traveling wave goes like exp(iωt − ikz)  → jy = −ikBx (c/4π)

2) Using ω = kvA : iωvx = jy Bz /(cρ 0),  ikvAvx = −ikBx (vA
2/Bz ),  vx /vA = −Bx /Bz

max
vx

max
−vx

3) Integrate over dt to show that fluid and field line displacements are equal
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The Lundquist Number in the Solar Corona

• The Lundquist number is the dimensionless ratio of two timescales:
– Alfvén wave travel time over a distance L
– Resistive diffusion time over the same distance

• It is equal to the magnetic Reynolds number divided by the Alfvén Mach 
number, Rm /MA
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Estimate of Heating Rate Due to Alfvén Wave Damping

…How does this stack up against the nanoflare/reconnection model?

Exponentially decaying wave is identical:  ∂/∂t⏐Bx
2/(8π)⏐ = 2ωi⏐Bx

2/(8π)⏐
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Sweet-Parker Model of Reconnection – 1

It’s only a 2D model, but it takes into account that the reconnection 
region must be very thin when the diffusivity is extremely low

How big can the inflow be, given these geometric constraints?
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Sweet-Parker Model of Reconnection – 2

We estimate the layer thickness from MHD magnetic induction,
and the outflow speed by assuming it is driven by the Lorentz force

Once again, the Lundquist number comes into play…
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Sweet-Parker Model of Reconnection – 3

Unfortunately, the low rate of magnetic energy conversion is reduced 
even further if L also approximates distance between current sheets:

It is possible to improve the (Lu)−1/2 to ln(Lu) through better models, such as 
the ones by Petschek or by Sonnerup and Priest, which have refinements:

• The plasma is compressible—fast or slow magnetosonic shocks allow u > vA

• The incoming magnetic field is bent by shocks, so outflow is broader (in 2D)
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Spicules/Fibrils (on the limb/disk)
A possible effect of sound waves on the solar atmosphere

Short-lived, tall jets in the Hα chromosphere may be driven by p-modes
Credit: Royal Swedish Academy of Sciences 
*See QuickTime movie of spicules in action
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Filaments and Prominences Viewed in Hα
They are condensations of cooler gas suspended in the corona
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Prominences Can Be Very… Prominent!
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Filaments Tend to Form on Magnetic Neutral Lines
This gives us a clue about what holds them up
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Huge Eruptive Prominence Captured by STEREO

*QuickTime movie shows all the action
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Eruptive Prominence from SDO First Light

http://science.nasa.gov/science-news/science-at-nasa/2010/21apr_firstlight/
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Zoomed-In Animation of Eruptive Prominence
Watch for the twist in the plumes of plasma as they descend

*QuickTime movie shows the event
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A Coronal Mass Ejection Witnessed by SOHO/LASCO
CME events are often associated with eruptive prominences
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Coronal Structures – 1
Possible MHD equilibria for long-lived formations
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Coronal Structures – 2
Prominences and their eruption

Can get the prominence to eject by squeezing the footpoints
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Coronal Structures – 3
Creating a solar flare

Can get the arcade to flare by shearing or twisting the footpoints
(out)         (in)

Coronal structures and dynamics can have consequences for Earth…
• Equilibrium structures (prominences, arcades) can suddenly lose stability, 

ejecting plasma and/or radiation into interplanetary space
• Low-level disturbances (waves, nanoflares) apparently heat the steady-state 

corona to high temperatures
– This turns the corona into a much stronger X-ray source than the photosphere
– As we will see, it drives a steady-state plasma outflow, the solar wind
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Solar Wind Formation



47

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz

Parker (1958) Solar Wind Equation – 1
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Parker (1958) Solar Wind Equation – 2
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Parker (1958) Solar Wind Equation – 3

The subsonic “solar breeze” solution is also permitted but is not observed 
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Spiral Magnetic Field in the Solar Wind – 1
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Spiral Magnetic Field in the Solar Wind – 2

(1) Show that field lines are Archimedean spirals—the same pattern made by
streams of water from a rotating lawn sprinkler when viewed from above:
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Spiral Magnetic Field in the Solar Wind – 3

Sum of an Archimedean spiral and a hyperbolic spiral
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Spiral Magnetic Field in the Solar Wind – 4



54

Steve Lantz
Electrical and Computer Engineering 5860
www.cac.cornell.edu/~slantz

The 3D Current Sheet: “Ballerina Skirt”
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Ulysses Main Results

• There are two distinct plasma 
regimes in the solar wind

– Near the equator, speed (red line) is 
low and density (blue line) is high.  
Composition is typical of the corona.

– At high to mid latitudes, speed is 
high and density is low, with less 
variability in both.  Composition is 
typical of the photosphere.

– Speed is approximately 750 km/s 
everywhere except near the equator.

• The solar wind’s magnetic field is not 
based on a dipole

– A dipole field would be twice as 
strong over the poles; in the solar 
wind, it is near-uniform with latitude.
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Spiral Magnetic Field in the Solar Wind – 5
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Shocks in the Interplanetary Medium
Where a fast corotating stream follows a slow one
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Spiral Magnetic Field in the Solar Wind – 6

• Sector crossings involving shock compression have a greater effect on 
geospace than those involving rarefactions

• To see why, first need to understand the steady state of interactions 
between the near-Earth environment and the solar wind…
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Chapman-Ferraro (1930) Magnetosphere
(Figure from Chapman and Bartels, 1940)

• Solar wind is like a superconductor that excludes the sunward dipole field 
• At planar boundary, a current sheet forms; field is summed with image dipole
• Separatrix QQ defines the “cusp” latitude associated with auroral ovals
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Anatomy of the Earth’s Magnetosphere
Current Sheets at the Magnetopause and Across the Tail

Figure from Kivelson and Russell

At the “nose” of the magnetosphere, the magnetic pressure of the Earth’s 
squeezed dipole field can stand up to the ram pressure of the solar wind
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Coronal Mass Ejections
How to launch a “magnetic cloud”

If aimed at Earth, a CME drastically changes the momentum (velocity 
and density) of the solar wind that impinges on the magnetosphere
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Magnetic Reconnection and Plasmoid Ejection
Magnetic could contains southward IMF

*Play QuickTime movie of solar wind gusts hitting the magnetosphere
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Cusp Aurora Due to Reconnection at High Latitude
Magnetic cloud contains northward IMF

http://web.ift.uib.no/~nikost/research.html
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Sun-Earth System Is Driven by the 11-Year Solar Cycle
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First-Ever 3D Images of the Sun from STEREO –
NASA's Solar TErrestrial RElations Observatory satellites

http://www.nasa.gov/mission_pages/stereo/news/stereo3D_press.html
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STEREO Images – 2
Spicules, Polar Coronal Hole, Prominence
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STEREO Images – 3
Active Regions

*See QuickTime movies for 3D animations
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