GPUs in Red Cloud

From CAC Documentation wiki
Revision as of 05:12, 31 August 2020 by Shl1 (talk | contribs)
Jump to navigation Jump to search

(This page under development)

Red Cloud supports GPU computing featuring Nvidia Tesla T4 and Nvidia Tesla V100 GPUs. To use a GPU, launch an instance with one of the following 2 flavors (instance types):

Flavor CPUs GPUs RAM
c4.t1.m20 4 1 Nvidia Tesla T4 20 GB
c14.g1.m60 14 1 Nvidia Tesla V100 60 GB

Availability

Red Cloud has 20 T4s and 4 V100s available. You can see how many are available for use here. If no GPU is available you will receive an error when launching a GPU instance.

Red Cloud resources (CPU cores, RAM, GPUs) are not oversubscribed. When you create a GPU instance with a certain number of GPUs, you are reserving the physical hardware for the duration of the life of your instance (and your subscription will be charged accordingly) unless it is shelved to free the resources. If you are new to Red Cloud please review how to read this documentation before launching an instance, especially the section on accounting.

Launching A GPU Instance

When launching an instance, you can use either the base Linux or Windows instances and install your own GPU libraries, or select CUDA source images such as (...). Next, select a GPU-enabled flavor and configure the instance as you would any other instance. Once your instance is launched, you will have access to the GPU within the VM and can install software (e.g., pytorch, tensorflow) that will use the GPU.

For more information on GPU and CUDA computing, see the Cornell Virtual Workshop "Introduction to GPGPU and CUDA Programming: Overview"

GPU images

These images include the following software:

  1. CUDA 10.1
  2. Anaconda python with these packages
    1. Tenserflow
    2. PyTorch
    3. Keras
  3. Docker-containerized Jupyter Notebook servers, and
  4. Matlab R2019a.

See Red Cloud GPU Image Usage page for more details and sample code.